BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 32013165)

  • 1. Double-Stranded RNAs (dsRNAs) as a Sustainable Tool against Gray Mold (
    Nerva L; Sandrini M; Gambino G; Chitarra W
    Biomolecules; 2020 Jan; 10(2):. PubMed ID: 32013165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BioClay™ prolongs RNA interference-mediated crop protection against Botrytis cinerea.
    Niño-Sánchez J; Sambasivam PT; Sawyer A; Hamby R; Chen A; Czislowski E; Li P; Manzie N; Gardiner DM; Ford R; Xu ZP; Mitter N; Jin H
    J Integr Plant Biol; 2022 Nov; 64(11):2187-2198. PubMed ID: 36040241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A wild-type Botrytis cinerea strain co-infected by double-stranded RNA mycoviruses presents hypovirulence-associated traits.
    Potgieter CA; Castillo A; Castro M; Cottet L; Morales A
    Virol J; 2013 Jul; 10():220. PubMed ID: 23816333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesizing Fluorescently Labeled dsRNAs and sRNAs to Visualize Fungal RNA Uptake.
    Hamby R; Wang M; Qiao L; Jin H
    Methods Mol Biol; 2020; 2166():215-225. PubMed ID: 32710411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome sequencing and traits analysis of Burkholderia strains reveal a promising biocontrol effect against grey mould disease in grapevine (Vitis vinifera L.).
    Esmaeel Q; Jacquard C; Clément C; Sanchez L; Ait Barka E
    World J Microbiol Biotechnol; 2019 Feb; 35(3):40. PubMed ID: 30739227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silencing of the Slt2-Type MAP Kinase
    Spada M; Pugliesi C; Fambrini M; Pecchia S
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34069750
    [No Abstract]   [Full Text] [Related]  

  • 7. Knockdown of
    Spada M; Pugliesi C; Fambrini M; Palpacelli D; Pecchia S
    Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902297
    [No Abstract]   [Full Text] [Related]  

  • 8. Analysis of the Molecular Dialogue Between Gray Mold (Botrytis cinerea) and Grapevine (Vitis vinifera) Reveals a Clear Shift in Defense Mechanisms During Berry Ripening.
    Kelloniemi J; Trouvelot S; Héloir MC; Simon A; Dalmais B; Frettinger P; Cimerman A; Fermaud M; Roudet J; Baulande S; Bruel C; Choquer M; Couvelard L; Duthieuw M; Ferrarini A; Flors V; Le Pêcheur P; Loisel E; Morgant G; Poussereau N; Pradier JM; Rascle C; Trdá L; Poinssot B; Viaud M
    Mol Plant Microbe Interact; 2015 Nov; 28(11):1167-80. PubMed ID: 26267356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNAi-Based Biofungicides as a Promising Next-Generation Strategy for Controlling Devastating Gray Mold Diseases.
    Islam MT; Sherif SM
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32197315
    [No Abstract]   [Full Text] [Related]  

  • 10. Oligogalacturonide signal transduction, induction of defense-related responses and protection of grapevine against Botrytis cinerea.
    Aziz A; Heyraud A; Lambert B
    Planta; 2004 Mar; 218(5):767-74. PubMed ID: 14618326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chitosan improves development, and protects Vitis vinifera L. against Botrytis cinerea.
    Ait Barka E; Eullaffroy P; Clément C; Vernet G
    Plant Cell Rep; 2004 Mar; 22(8):608-14. PubMed ID: 14595516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osmotic stress-induced polyamine oxidation mediates defence responses and reduces stress-enhanced grapevine susceptibility to Botrytis cinerea.
    Hatmi S; Trotel-Aziz P; Villaume S; Couderchet M; Clément C; Aziz A
    J Exp Bot; 2014 Jan; 65(1):75-88. PubMed ID: 24170740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual Mode of Action of Grape Cane Extracts against Botrytis cinerea.
    De Bona GS; Adrian M; Negrel J; Chiltz A; Klinguer A; Poinssot B; Héloir MC; Angelini E; Vincenzi S; Bertazzon N
    J Agric Food Chem; 2019 May; 67(19):5512-5520. PubMed ID: 31008600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Double-stranded RNA targeting fungal ergosterol biosynthesis pathway controls Botrytis cinerea and postharvest grey mould.
    Duanis-Assaf D; Galsurker O; Davydov O; Maurer D; Feygenberg O; Sagi M; Poverenov E; Fluhr R; Alkan N
    Plant Biotechnol J; 2022 Jan; 20(1):226-237. PubMed ID: 34520611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteome and transcript analysis of Vitis vinifera cell cultures subjected to Botrytis cinerea infection.
    Dadakova K; Havelkova M; Kurkova B; Tlolkova I; Kasparovsky T; Zdrahal Z; Lochman J
    J Proteomics; 2015 Apr; 119():143-53. PubMed ID: 25688916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photodynamic inactivation of Botrytis cinerea by an anionic porphyrin: an alternative pest management of grapevine.
    Ambrosini V; Issawi M; Sol V; Riou C
    Sci Rep; 2020 Oct; 10(1):17438. PubMed ID: 33060706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A double-stranded RNA mycovirus confers hypovirulence-associated traits to Botrytis cinerea.
    Castro M; Kramer K; Valdivia L; Ortiz S; Castillo A
    FEMS Microbiol Lett; 2003 Nov; 228(1):87-91. PubMed ID: 14612241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the Impact of Two Molecules on Plant Defense and on Efficacy against Botrytis cinerea in the Vineyard: A Plant Defense Inducer (Benzothiadiazole) and a Fungicide (Pyrimethanil).
    Bellée A; Cluzet S; Dufour MC; Mérillon JM; Corio-Costet MF
    J Agric Food Chem; 2018 Apr; 66(13):3338-3350. PubMed ID: 29557656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The SWEET family of sugar transporters in grapevine: VvSWEET4 is involved in the interaction with Botrytis cinerea.
    Chong J; Piron MC; Meyer S; Merdinoglu D; Bertsch C; Mestre P
    J Exp Bot; 2014 Dec; 65(22):6589-601. PubMed ID: 25246444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Challenges and Opportunities Arising from Host-
    Spada M; Pugliesi C; Fambrini M; Pecchia S
    Int J Mol Sci; 2024 Jun; 25(12):. PubMed ID: 38928507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.