These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 32013219)

  • 1. SLIM1 Transcription Factor Promotes Sulfate Uptake and Distribution to Shoot, Along with Phytochelatin Accumulation, Under Cadmium Stress in Arabidopsis thaliana.
    Yamaguchi C; Khamsalath S; Takimoto Y; Suyama A; Mori Y; Ohkama-Ohtsu N; Maruyama-Nakashita A
    Plants (Basel); 2020 Jan; 9(2):. PubMed ID: 32013219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Cadmium Treatment on the Uptake and Translocation of Sulfate in Arabidopsis thaliana.
    Yamaguchi C; Takimoto Y; Ohkama-Ohtsu N; Hokura A; Shinano T; Nakamura T; Suyama A; Maruyama-Nakashita A
    Plant Cell Physiol; 2016 Nov; 57(11):2353-2366. PubMed ID: 27590710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutathione homeostasis and Cd tolerance in the Arabidopsis sultr1;1-sultr1;2 double mutant with limiting sulfate supply.
    Liu X; Wu FH; Li JX; Chen J; Wang GH; Wang WH; Hu WJ; Gao LJ; Wang ZL; Chen JH; Simon M; Zheng HL
    Plant Cell Rep; 2016 Feb; 35(2):397-413. PubMed ID: 26581950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism.
    Maruyama-Nakashita A; Nakamura Y; Tohge T; Saito K; Takahashi H
    Plant Cell; 2006 Nov; 18(11):3235-51. PubMed ID: 17114350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The SLIM1 transcription factor is required for arsenic resistance in Arabidopsis thaliana.
    Jobe TO; Yu Q; Hauser F; Xie Q; Meng Y; Maassen T; Kopriva S; Schroeder JI
    FEBS Lett; 2021 Jun; 595(12):1696-1707. PubMed ID: 33960401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The C-Terminal Region of SLIM1 Transcription Factor Is Required for Sulfur Deficiency Response.
    Piotrowska J; Jodoi Y; Trang NH; Wawrzynska A; Takahashi H; Sirko A; Maruyama-Nakashita A
    Plants (Basel); 2022 Oct; 11(19):. PubMed ID: 36235462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plants prioritize phytochelatin synthesis during cadmium exposure even under reduced sulfate uptake caused by the disruption of SULTR1;2.
    Yamaguchi C; Ohkama-Ohtsu N; Shinano T; Maruyama-Nakashita A
    Plant Signal Behav; 2017 May; 12(5):e1325053. PubMed ID: 28486013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Arabidopsis APR2 positively regulates cadmium tolerance through glutathione-dependent pathway.
    Xu Z; Wang M; Xu D; Xia Z
    Ecotoxicol Environ Saf; 2020 Jan; 187():109819. PubMed ID: 31654864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MAN3 gene regulates cadmium tolerance through the glutathione-dependent pathway in Arabidopsis thaliana.
    Chen J; Yang L; Gu J; Bai X; Ren Y; Fan T; Han Y; Jiang L; Xiao F; Liu Y; Cao S
    New Phytol; 2015 Jan; 205(2):570-82. PubMed ID: 25329733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zinc-Finger Transcription Factor ZAT6 Positively Regulates Cadmium Tolerance through the Glutathione-Dependent Pathway in Arabidopsis.
    Chen J; Yang L; Yan X; Liu Y; Wang R; Fan T; Ren Y; Tang X; Xiao F; Liu Y; Cao S
    Plant Physiol; 2016 May; 171(1):707-19. PubMed ID: 26983992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Sulfate Supply Maximizing Arabidopsis Shoot Growth Is Higher under Long- than Short-Term Exposure to Cadmium.
    Ferri A; Lancilli C; Maghrebi M; Lucchini G; Sacchi GA; Nocito FF
    Front Plant Sci; 2017; 8():854. PubMed ID: 28588602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. To control and to be controlled: understanding the Arabidopsis SLIM1 function in sulfur deficiency through comprehensive investigation of the EIL protein family.
    Wawrzyńska A; Sirko A
    Front Plant Sci; 2014; 5():575. PubMed ID: 25374579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EIN3 interferes with the sulfur deficiency signaling in Arabidopsis thaliana through direct interaction with the SLIM1 transcription factor.
    Wawrzyńska A; Sirko A
    Plant Sci; 2016 Dec; 253():50-57. PubMed ID: 27968996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Mechanisms of heavy metal cadmium tolerance in plants].
    Zhang J; Shu WS
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Feb; 32(1):1-8. PubMed ID: 16477124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd(2+) tolerance and accumulation but not translocation to the shoot.
    Pomponi M; Censi V; Di Girolamo V; De Paolis A; di Toppi LS; Aromolo R; Costantino P; Cardarelli M
    Planta; 2006 Jan; 223(2):180-90. PubMed ID: 16133212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of
    Apodiakou A; Alseekh S; Hoefgen R; Whitcomb SJ
    Front Plant Sci; 2024; 15():1327152. PubMed ID: 38571711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of prior Cd(2+) exposure on the uptake of Cd(2+) and other elements in the phytochelatin-deficient mutant, cad1-3, of Arabidopsis thaliana.
    Larsson EH; Asp H; Bornman JF
    J Exp Bot; 2002 Mar; 53(368):447-53. PubMed ID: 11847243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Plant sulfate assimilation and regulation of the activity of related enzymes under cadmium stress].
    Sun XM; Yang ZM
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Feb; 32(1):9-16. PubMed ID: 16477125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis.
    Brunetti P; Zanella L; De Paolis A; Di Litta D; Cecchetti V; Falasca G; Barbieri M; Altamura MM; Costantino P; Cardarelli M
    J Exp Bot; 2015 Jul; 66(13):3815-29. PubMed ID: 25900618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytochelatin Synthase has Contrasting Effects on Cadmium and Arsenic Accumulation in Rice Grains.
    Uraguchi S; Tanaka N; Hofmann C; Abiko K; Ohkama-Ohtsu N; Weber M; Kamiya T; Sone Y; Nakamura R; Takanezawa Y; Kiyono M; Fujiwara T; Clemens S
    Plant Cell Physiol; 2017 Oct; 58(10):1730-1742. PubMed ID: 29016913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.