These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 32013407)

  • 1. Ultrasensitive Paper-Based Photoelectrochemical Sensing Platform Enabled by the Polar Charge Carriers-Created Electric Field.
    Gao C; Yu H; Zhang L; Zhao Y; Xie J; Li C; Cui K; Yu J
    Anal Chem; 2020 Feb; 92(4):2902-2906. PubMed ID: 32013407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Paper-Based Origami Photoelectrochemical Sensing Platform with TiO
    Gao C; Xue J; Zhang L; Cui K; Li H; Yu J
    Anal Chem; 2018 Dec; 90(24):14116-14120. PubMed ID: 30421907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A photoelectrochemical aptasensor based on p-n heterojunction CdS-Cu
    Kong W; Qu F; Lu L
    Anal Bioanal Chem; 2020 Feb; 412(4):841-848. PubMed ID: 31897553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Directional Charge Carrier Transport Using Ferroelectric Polarization for Enhanced Photoelectrochemical Water Oxidation.
    Xu Q; Berardan D; Brisset F; Colbeau-Justin C; Ghazzal MN
    Small; 2024 Jun; 20(23):e2308750. PubMed ID: 38200680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A significant enhancement of bulk charge separation in photoelectrocatalysis by ferroelectric polarization induced in CdS/BaTiO
    Jiang Z; Xiao Z; Tao Z; Zhang X; Lin S
    RSC Adv; 2021 Aug; 11(43):26534-26545. PubMed ID: 35480002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into Chemical Bonds for Eliminating the Depletion Region and Accelerating the Photo-Induced Charge Efficient Separation toward Ultrasensitive Photoelectrochemical Sensing.
    Wang S; Yu H; Ge S; Wang Y; Gao C; Yu J
    Biosensors (Basel); 2023 Nov; 13(11):. PubMed ID: 37998159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering paper-based visible light-responsive Sn-self doped domed SnO
    Yu H; Tan X; Sun S; Zhang L; Gao C; Ge S
    Biosens Bioelectron; 2021 Aug; 185():113250. PubMed ID: 33915433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Target-Driven Self-Feedback Paper-Based Photoelectrochemical Sensing Platform for Ultrasensitive Detection of Ochratoxin A with an In
    Tan X; Yu H; Liang B; Han M; Ge S; Zhang L; Li L; Li L; Yu J
    Anal Chem; 2022 Jan; 94(3):1705-1712. PubMed ID: 35014798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ferroelectric Polarization-Enhanced Photoelectrochemical Water Splitting in TiO2-BaTiO3 Core-Shell Nanowire Photoanodes.
    Yang W; Yu Y; Starr MB; Yin X; Li Z; Kvit A; Wang S; Zhao P; Wang X
    Nano Lett; 2015 Nov; 15(11):7574-80. PubMed ID: 26492362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoelectrocatalytic degradation of deoxynivalenol on CuO-Cu
    Cheng L; Jiang T; Zhang J
    Sci Total Environ; 2021 Jul; 776():145840. PubMed ID: 33647648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The optimization of surface morphology of Au nanoparticles on WO
    Jun J; Ju S; Moon S; Son S; Huh D; Liu Y; Kim K; Lee H
    Nanotechnology; 2020 May; 31(20):204003. PubMed ID: 31995544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced photoelectrochemical activities for water oxidation and phenol degradation on WO
    Sun L; Wang Y; Raziq F; Qu Y; Bai L; Jing L
    Sci Rep; 2017 May; 7(1):1303. PubMed ID: 28465558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designing WO
    Wang Y; Chen C; Tian W; Xu W; Li L
    Nanotechnology; 2019 Dec; 30(49):495402. PubMed ID: 31476749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 1D WO
    Li Y; Liu Z; Ruan M; Guo Z; Li X
    ChemSusChem; 2019 Dec; 12(24):5282-5290. PubMed ID: 31659855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Au nanoclusters-decorated WO
    Dai S; Huang H; Liu S; Deng W; Tan Y; Xie Q
    Analyst; 2022 Dec; 147(24):5747-5753. PubMed ID: 36413105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic structure engineering of Cu2O film/ZnO nanorods array all-oxide p-n heterostructure for enhanced photoelectrochemical property and self-powered biosensing application.
    Kang Z; Yan X; Wang Y; Bai Z; Liu Y; Zhang Z; Lin P; Zhang X; Yuan H; Zhang X; Zhang Y
    Sci Rep; 2015 Jan; 5():7882. PubMed ID: 25600940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional core-shell heterostructure of tungsten trioxide/bismuth molybdate/cobalt phosphate for enhanced photoelectrochemical water splitting.
    Sayed MS; Mohapatra D; Baynosa ML; Shim JJ
    J Colloid Interface Sci; 2021 Sep; 598():348-357. PubMed ID: 33910070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple roles for LaFeO
    Li Y; Tang S; Sheng H; Li C; Li H; Dong B; Cao L
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):598-609. PubMed ID: 36179579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing Photoelectrochemical Water Oxidation on WO
    Li K; Yin Y; Diao P
    Small; 2024 Jun; ():e2402474. PubMed ID: 38822710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Establishing Interfacial Charge-Transfer Transitions on Ferroelectric Perovskites: An Efficient Route for Photoelectrochemical Bioanalysis.
    Zhang Q; Zhang L; Liu XN; Li Z; Li Z; Wu X; Wang GL; Zhao WW
    ACS Sens; 2020 Dec; 5(12):3827-3832. PubMed ID: 33315371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.