These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 32013407)

  • 21. All-solid-state metal-mediated Z-scheme photoelectrochemical immunoassay with enhanced photoexcited charge-separation for monitoring of prostate-specific antigen.
    Zhang L; Luo Z; Zeng R; Zhou Q; Tang D
    Biosens Bioelectron; 2019 Jun; 134():1-7. PubMed ID: 30947036
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Insight into Charge Separation in WO
    Chae SY; Lee CS; Jung H; Joo OS; Min BK; Kim JH; Hwang YJ
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19780-19790. PubMed ID: 28530789
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heterogeneous p-n Junction CdS/Cu
    Wang L; Wang W; Chen Y; Yao L; Zhao X; Shi H; Cao M; Liang Y
    ACS Appl Mater Interfaces; 2018 Apr; 10(14):11652-11662. PubMed ID: 29544248
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Using reduced graphene oxide-Ca:CdSe nanocomposite to enhance photoelectrochemical activity of gold nanoparticles functionalized tungsten oxide for highly sensitive prostate specific antigen detection.
    Wang X; Xu R; Sun X; Wang Y; Ren X; Du B; Wu D; Wei Q
    Biosens Bioelectron; 2017 Oct; 96():239-245. PubMed ID: 28500948
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-Dimensional WO
    Wang Y; Tian W; Chen L; Cao F; Guo J; Li L
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40235-40243. PubMed ID: 29067799
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tungsten oxide nanostructures and nanocomposites for photoelectrochemical water splitting.
    Zheng G; Wang J; Liu H; Murugadoss V; Zu G; Che H; Lai C; Li H; Ding T; Gao Q; Guo Z
    Nanoscale; 2019 Oct; 11(41):18968-18994. PubMed ID: 31361294
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving the charge properties of the WO
    Wang M; Zeng Q; Chang S; Li S; Hu C; Chen Z
    Phys Chem Chem Phys; 2021 Apr; 23(14):8241-8245. PubMed ID: 33875991
    [TBL] [Abstract][Full Text] [Related]  

  • 28. WO₃ nanoflakes for enhanced photoelectrochemical conversion.
    Li W; Da P; Zhang Y; Wang Y; Lin X; Gong X; Zheng G
    ACS Nano; 2014 Nov; 8(11):11770-7. PubMed ID: 25347213
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Liquid-Metal-Induced Hydrogen Insertion in Photoelectrodes for Enhanced Photoelectrochemical Water Oxidation.
    Wang J; Cheng H; Cui Y; Yang Y; He H; Cai Y; Wang Z; Wang L; Hu Y
    ACS Nano; 2022 Dec; 16(12):21248-21258. PubMed ID: 36480658
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Boosting light harvesting and charge separation of WO
    Khalifa MA; Shen L; Zheng J; Xu C
    RSC Adv; 2021 Apr; 11(22):13513-13520. PubMed ID: 35423861
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photoactive Tungsten-Oxide Nanomaterials for Water-Splitting.
    Shabdan Y; Markhabayeva A; Bakranov N; Nuraje N
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32962035
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effective silicon nanowire arrays/WO
    Chen Z; Ning M; Ma G; Meng Q; Zhang Y; Gao J; Jin M; Chen Z; Yuan M; Wang X; Liu JM; Zhou G
    Nanotechnology; 2017 Jul; 28(27):275401. PubMed ID: 28531092
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lattice distortion induced internal electric field in TiO
    Hu Y; Pan Y; Wang Z; Lin T; Gao Y; Luo B; Hu H; Fan F; Liu G; Wang L
    Nat Commun; 2020 May; 11(1):2129. PubMed ID: 32358565
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The W@WO
    Wan F; Kong L; Wang C; Li Y; Liu Y; Zhang X
    Dalton Trans; 2017 Jan; 46(5):1487-1494. PubMed ID: 28091650
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photoelectrochemical Bioanalysis Platform for Cells Monitoring Based on Dual Signal Amplification Using in Situ Generation of Electron Acceptor Coupled with Heterojunction.
    Li R; Zhang Y; Tu W; Dai Z
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):22289-22297. PubMed ID: 28621518
    [TBL] [Abstract][Full Text] [Related]  

  • 36. One-Step Synthesis of CuO-Cu
    Zhu Y; Xu Z; Yan K; Zhao H; Zhang J
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40452-40460. PubMed ID: 29111634
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photo-driven Oxygen Vacancies Extends Charge Carrier Lifetime for Efficient Solar Water Splitting.
    Sun M; Gao RT; He J; Liu X; Nakajima T; Zhang X; Wang L
    Angew Chem Int Ed Engl; 2021 Aug; 60(32):17601-17607. PubMed ID: 34018300
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel WO3/Sb2S3 Heterojunction Photocatalyst Based on WO3 of Different Morphologies for Enhanced Efficiency in Photoelectrochemical Water Splitting.
    Zhang J; Liu Z; Liu Z
    ACS Appl Mater Interfaces; 2016 Apr; 8(15):9684-91. PubMed ID: 27032422
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dual Oxygen and Tungsten Vacancies on a WO3 Photoanode for Enhanced Water Oxidation.
    Ma M; Zhang K; Li P; Jung MS; Jeong MJ; Park JH
    Angew Chem Int Ed Engl; 2016 Sep; 55(39):11819-23. PubMed ID: 27533279
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidic paper-based photoelectrochemical sensing platform with electron-transfer tunneling distance regulation strategy for thrombin detection.
    Xue J; Zhang L; Gao C; Zhu P; Yu J
    Biosens Bioelectron; 2019 May; 133():1-7. PubMed ID: 30901598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.