BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32013409)

  • 1. Microbial Synthesis of Antibacterial Phenazine-1,6-dicarboxylic Acid and the Role of PhzG in
    Guo S; Wang Y; Bilal M; Hu H; Wang W; Zhang X
    J Agric Food Chem; 2020 Feb; 68(8):2373-2380. PubMed ID: 32013409
    [No Abstract]   [Full Text] [Related]  

  • 2. PhzA, the shunt switch of phenazine-1,6-dicarboxylic acid biosynthesis in Pseudomonas chlororaphis HT66.
    Guo S; Wang Y; Dai B; Wang W; Hu H; Huang X; Zhang X
    Appl Microbiol Biotechnol; 2017 Oct; 101(19):7165-7175. PubMed ID: 28871340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. iTRAQ-based quantitative proteomic analysis reveals potential factors associated with the enhancement of phenazine-1-carboxamide production in Pseudomonas chlororaphis P3.
    Jin XJ; Peng HS; Hu HB; Huang XQ; Wang W; Zhang XH
    Sci Rep; 2016 Jun; 6():27393. PubMed ID: 27273243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic Engineering of
    Li L; Li Z; Yao W; Zhang X; Wang R; Li P; Yang K; Wang T; Liu K
    J Agric Food Chem; 2020 Dec; 68(50):14832-14840. PubMed ID: 33287542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced biosynthesis of phenazine-1-carboxamide by Pseudomonas chlororaphis strains using statistical experimental designs.
    Peng H; Tan J; Bilal M; Wang W; Hu H; Zhang X
    World J Microbiol Biotechnol; 2018 Aug; 34(9):129. PubMed ID: 30094643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of Antibacterial Questiomycin A in Metabolically Engineered
    Guo S; Hu H; Wang W; Bilal M; Zhang X
    J Agric Food Chem; 2022 Jun; 70(25):7742-7750. PubMed ID: 35708224
    [No Abstract]   [Full Text] [Related]  

  • 7. Designing an Artificial Pathway for the Biosynthesis of a Novel Phenazine
    Guo S; Liu R; Wang W; Hu H; Li Z; Zhang X
    ACS Synth Biol; 2020 Apr; 9(4):883-892. PubMed ID: 32197042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative metabolomics and transcriptomics analyses provide insights into the high-yield mechanism of phenazines biosynthesis in Pseudomonas chlororaphis GP72.
    Li S; Yue SJ; Huang P; Feng TT; Zhang HY; Yao RL; Wang W; Zhang XH; Hu HB
    J Appl Microbiol; 2022 Nov; 133(5):2790-2801. PubMed ID: 35870153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trapped intermediates in crystals of the FMN-dependent oxidase PhzG provide insight into the final steps of phenazine biosynthesis.
    Xu N; Ahuja EG; Janning P; Mavrodi DV; Thomashow LS; Blankenfeldt W
    Acta Crystallogr D Biol Crystallogr; 2013 Aug; 69(Pt 8):1403-13. PubMed ID: 23897464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic engineering of Pseudomonas chlororaphis GP72 for the enhanced production of 2-Hydroxyphenazine.
    Liu K; Hu H; Wang W; Zhang X
    Microb Cell Fact; 2016 Jul; 15(1):131. PubMed ID: 27470070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis and metabolic engineering of 1-hydroxyphenazine in Pseudomonas chlororaphis H18.
    Wan Y; Liu H; Xian M; Huang W
    Microb Cell Fact; 2021 Dec; 20(1):235. PubMed ID: 34965873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of phenazine-1-carboxylic acid in the interaction between Pseudomonas chlororaphis subsp. aureofaciens strain M71 and Seiridium cardinale in vivo.
    Raio A; Reveglia P; Puopolo G; Cimmino A; Danti R; Evidente A
    Microbiol Res; 2017 Jun; 199():49-56. PubMed ID: 28454709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyrrolnitrin is more essential than phenazines for Pseudomonas chlororaphis G05 in its suppression of Fusarium graminearum.
    Huang R; Feng Z; Chi X; Sun X; Lu Y; Zhang B; Lu R; Luo W; Wang Y; Miao J; Ge Y
    Microbiol Res; 2018 Oct; 215():55-64. PubMed ID: 30172309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Production of 2-Hydroxyphenazine from Glycerol by a Two-Stage Fermentation Strategy in
    Yue SJ; Huang P; Li S; Jan M; Hu HB; Wang W; Zhang XH
    J Agric Food Chem; 2020 Jan; 68(2):561-566. PubMed ID: 31840510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of the phenazine biosynthesis enzyme PhzG.
    Parsons JF; Calabrese K; Eisenstein E; Ladner JE
    Acta Crystallogr D Biol Crystallogr; 2004 Nov; 60(Pt 11):2110-3. PubMed ID: 15502343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of new arylamine N-acetyltransferases and enhancing 2-acetamidophenol production in Pseudomonas chlororaphis HT66.
    Guo S; Wang Y; Wang W; Hu H; Zhang X
    Microb Cell Fact; 2020 May; 19(1):105. PubMed ID: 32430011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of trans-2,3-dihydro-3-hydroxyanthranilic acid by engineered Pseudomonas chlororaphis GP72.
    Hu H; Li Y; Liu K; Zhao J; Wang W; Zhang X
    Appl Microbiol Biotechnol; 2017 Sep; 101(17):6607-6613. PubMed ID: 28702795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EppR, a new LysR-family transcription regulator, positively influences phenazine biosynthesis in the plant growth-promoting rhizobacterium Pseudomonas chlororaphis G05.
    Chi X; Wang Y; Miao J; Wang W; Sun Y; Yu Z; Feng Z; Cheng S; Chen L; Ge Y
    Microbiol Res; 2022 Jul; 260():127050. PubMed ID: 35504237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing Pseudomonas spp. strains.
    Chin-A-Woeng TF; Thomas-Oates JE; Lugtenberg BJ; Bloemberg GV
    Mol Plant Microbe Interact; 2001 Aug; 14(8):1006-15. PubMed ID: 11497461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reciprocal enhancement of gene expression between the phz and prn operon in Pseudomonas chlororaphis G05.
    Zhang B; Wang Y; Miao J; Lu Y; Lu R; Sun X; Luo W; Chi X; Feng Z; Ge Y
    J Basic Microbiol; 2018 Sep; 58(9):793-805. PubMed ID: 29995319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.