These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 32013474)

  • 21. Robustness of the reproductive number estimates in vector-borne disease systems.
    Tennant W; Recker M
    PLoS Negl Trop Dis; 2018 Dec; 12(12):e0006999. PubMed ID: 30557351
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multi-stage Vector-Borne Zoonoses Models: A Global Analysis.
    Bichara D; Iggidr A; Smith L
    Bull Math Biol; 2018 Jul; 80(7):1810-1848. PubMed ID: 29696599
    [TBL] [Abstract][Full Text] [Related]  

  • 23. R0 for vector-borne diseases: impact of the assumption for the duration of the extrinsic incubation period.
    Hartemink N; Cianci D; Reiter P
    Vector Borne Zoonotic Dis; 2015 Mar; 15(3):215-7. PubMed ID: 25793478
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Epidemic models for complex networks with demographics.
    Jin Z; Sun G; Zhu H
    Math Biosci Eng; 2014 Dec; 11(6):1295-317. PubMed ID: 25365609
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the role of vector modeling in a minimalistic epidemic model.
    Rashkov P; Venturino E; Aguiar M; Stollenwerk N; W Kooi B
    Math Biosci Eng; 2019 May; 16(5):4314-4338. PubMed ID: 31499664
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Threshold dynamics in a time-delayed epidemic model with dispersal.
    White MC; Zhao XQ
    Math Biosci; 2009 Apr; 218(2):121-9. PubMed ID: 19563742
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Global stability of an epidemic model with delay and general nonlinear incidence.
    McCluskey CC
    Math Biosci Eng; 2010 Oct; 7(4):837-50. PubMed ID: 21077711
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transmission dynamics for vector-borne diseases in a patchy environment.
    Xiao Y; Zou X
    J Math Biol; 2014 Jul; 69(1):113-46. PubMed ID: 23732558
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modelling disease spread in dispersal networks at two levels.
    Xiao Y; Zhou Y; Tang S
    Math Med Biol; 2011 Sep; 28(3):227-44. PubMed ID: 20439307
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamical analysis of an age-structured multi-group SIVS epidemic model.
    Yang J; Xu R; Luo X
    Math Biosci Eng; 2019 Jan; 16(2):636-666. PubMed ID: 30861660
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of infection age on an SIS epidemic model on complex networks.
    Yang J; Chen Y; Xu F
    J Math Biol; 2016 Nov; 73(5):1227-1249. PubMed ID: 27007281
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Approximation methods for analyzing multiscale stochastic vector-borne epidemic models.
    Liu X; Mubayi A; Reinhold D; Zhu L
    Math Biosci; 2019 Mar; 309():42-65. PubMed ID: 30658089
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A theta-scheme approximation of basic reproduction number for an age-structured epidemic system in a finite horizon.
    Guo WJ; Ye M; Li XN; Meyer-Baese A; Zhang QM
    Math Biosci Eng; 2019 May; 16(5):4107-4121. PubMed ID: 31499653
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Climate predicts geographic and temporal variation in mosquito-borne disease dynamics on two continents.
    Caldwell JM; LaBeaud AD; Lambin EF; Stewart-Ibarra AM; Ndenga BA; Mutuku FM; Krystosik AR; Ayala EB; Anyamba A; Borbor-Cordova MJ; Damoah R; Grossi-Soyster EN; Heras FH; Ngugi HN; Ryan SJ; Shah MM; Sippy R; Mordecai EA
    Nat Commun; 2021 Feb; 12(1):1233. PubMed ID: 33623008
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deriving risk maps from epidemiological models of vector borne diseases: State-of-the-art and suggestions for best practice.
    Cheng Y; Tjaden NB; Jaeschke A; Thomas SM; Beierkuhnlein C
    Epidemics; 2020 Dec; 33():100411. PubMed ID: 33130413
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Epidemic dynamics of a vector-borne disease on a villages-and-city star network with commuters.
    Mpolya EA; Yashima K; Ohtsuki H; Sasaki A
    J Theor Biol; 2014 Feb; 343():120-6. PubMed ID: 24321227
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Interaction between Vector Life History and Short Vector Life in Vector-Borne Disease Transmission and Control.
    Brand SP; Rock KS; Keeling MJ
    PLoS Comput Biol; 2016 Apr; 12(4):e1004837. PubMed ID: 27128163
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analytic calculation of finite-population reproductive numbers for direct- and vector-transmitted diseases with homogeneous mixing.
    Keegan L; Dushoff J
    Bull Math Biol; 2014 May; 76(5):1143-54. PubMed ID: 24756856
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reproduction numbers for epidemic models with households and other social structures. I. Definition and calculation of R0.
    Pellis L; Ball F; Trapman P
    Math Biosci; 2012 Jan; 235(1):85-97. PubMed ID: 22085761
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Host-parasite interactions in vector-borne protozoan infections.
    Baneth G; Bates PA; Olivieri A
    Eur J Protistol; 2020 Oct; 76():125741. PubMed ID: 33147559
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.