These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 32013489)
1. Reconstructing bifurcation diagrams only from time-series data generated by electronic circuits in discrete-time dynamical systems. Itoh Y; Uenohara S; Adachi M; Morie T; Aihara K Chaos; 2020 Jan; 30(1):013128. PubMed ID: 32013489 [TBL] [Abstract][Full Text] [Related]
2. Reconstructing bifurcation diagrams of chaotic circuits with reservoir computing. Luo H; Du Y; Fan H; Wang X; Guo J; Wang X Phys Rev E; 2024 Feb; 109(2-1):024210. PubMed ID: 38491568 [TBL] [Abstract][Full Text] [Related]
3. Reconstructing bifurcation diagrams of dynamical systems using measured time series. Bagarinao E; Pakdaman K; Nomura T; Sato S Methods Inf Med; 2000 Jun; 39(2):146-9. PubMed ID: 10892250 [TBL] [Abstract][Full Text] [Related]
4. Bifurcation diagrams in estimated parameter space using a pruned extreme learning machine. Itoh Y; Adachi M Phys Rev E; 2018 Jul; 98(1-1):013301. PubMed ID: 30110849 [TBL] [Abstract][Full Text] [Related]
7. Multi-scroll hidden attractors with two stable equilibrium points. Deng Q; Wang C Chaos; 2019 Sep; 29(9):093112. PubMed ID: 31575154 [TBL] [Abstract][Full Text] [Related]
10. Bifurcation Diagrams of Nonlinear Oscillatory Dynamical Systems: A Brief Review in 1D, 2D and 3D. Marszalek W; Walczak M Entropy (Basel); 2024 Sep; 26(9):. PubMed ID: 39330103 [TBL] [Abstract][Full Text] [Related]
11. A novel memristor-based dynamical system with multi-wing attractors and symmetric periodic bursting. Chang H; Li Y; Chen G Chaos; 2020 Apr; 30(4):043110. PubMed ID: 32357669 [TBL] [Abstract][Full Text] [Related]
12. Reconstructing bifurcation diagrams from noisy time series using nonlinear autoregressive models. Bagarinao E; Pakdaman K; Nomura T; Sato S Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jul; 60(1):1073-6. PubMed ID: 11969857 [TBL] [Abstract][Full Text] [Related]
13. A hyperchaotic cycloid map with attractor topology sensitive to system parameters. Dong C; Sun K; He S; Wang H Chaos; 2021 Aug; 31(8):083132. PubMed ID: 34470247 [TBL] [Abstract][Full Text] [Related]
15. Manifold angles, the concept of self-similarity, and angle-enhanced bifurcation diagrams. Beims MW; Gallas JA Sci Rep; 2016 Jan; 6():18859. PubMed ID: 26732416 [TBL] [Abstract][Full Text] [Related]
16. Extreme multistability in a memristor-based multi-scroll hyper-chaotic system. Yuan F; Wang G; Wang X Chaos; 2016 Jul; 26(7):073107. PubMed ID: 27475067 [TBL] [Abstract][Full Text] [Related]
17. Random parameter-switching synthesis of a class of hyperbolic attractors. Danca MF Chaos; 2008 Sep; 18(3):033111. PubMed ID: 19045449 [TBL] [Abstract][Full Text] [Related]
18. A simple no-equilibrium chaotic system with only one signum function for generating multidirectional variable hidden attractors and its hardware implementation. Zhang S; Wang X; Zeng Z Chaos; 2020 May; 30(5):053129. PubMed ID: 32491881 [TBL] [Abstract][Full Text] [Related]
19. Bifurcations of a periodically forced microbial continuous culture model with restrained growth rate. Ren J; Yuan Q Chaos; 2017 Aug; 27(8):083124. PubMed ID: 28863478 [TBL] [Abstract][Full Text] [Related]
20. A novel 3D non-autonomous system with parametrically excited abundant dynamics and bursting oscillations. Wang M; Li J; Yu SS; Zhang X; Li Z; Iu HHC Chaos; 2020 Apr; 30(4):043125. PubMed ID: 32357663 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]