These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 32013489)

  • 21. Superconductivity coupling of harmonic resonant oscillators: Homogeneous and heterogeneous extreme multistability with multi-scrolls.
    Fonzin Fozin T; Tchamda AR; Sivaganesh G; Srinivasan K; Tabekoueng Njitacke Z; Mezatio AB
    Chaos; 2024 Jan; 34(1):. PubMed ID: 38285725
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Saddle-node bifurcation of periodic orbit route to hidden attractors.
    Kumarasamy S; Banerjee M; Varshney V; Shrimali MD; Kuznetsov NV; Prasad A
    Phys Rev E; 2023 May; 107(5):L052201. PubMed ID: 37328971
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamics of a driven harmonic oscillator coupled to independent Ising spins in random fields.
    Zech P; Otto A; Radons G
    Phys Rev E; 2020 Apr; 101(4-1):042217. PubMed ID: 32422826
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Intricacies of Sprott-B System with Fractional-Order Derivatives: Dynamical Analysis, Synchronization, and Circuit Implementation.
    Lu R; Alexander P; Natiq H; Karthikeyan A; Jafari S; Petrzela J
    Entropy (Basel); 2023 Sep; 25(9):. PubMed ID: 37761651
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Generating one to four-wing hidden attractors in a novel 4D no-equilibrium chaotic system with extreme multistability.
    Zhang S; Zeng Y; Li Z; Wang M; Xiong L
    Chaos; 2018 Jan; 28(1):013113. PubMed ID: 29390621
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Symmetry of Lyapunov exponents in bifurcation structures of one-dimensional maps.
    Shimada Y; Takagi E; Ikeguchi T
    Chaos; 2016 Dec; 26(12):123119. PubMed ID: 28039982
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis and control of an SEIR epidemic system with nonlinear transmission rate.
    Yi N; Zhang Q; Mao K; Yang D; Li Q
    Math Comput Model; 2009 Nov; 50(9):1498-1513. PubMed ID: 32288203
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multistability and arithmetically period-adding bifurcations in piecewise smooth dynamical systems.
    Do Y; Lai YC
    Chaos; 2008 Dec; 18(4):043107. PubMed ID: 19123617
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of noise-induced strange nonchaotic attractors.
    Wang X; Lai YC; Lai CH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 2):016203. PubMed ID: 16907173
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experimental dynamical characterization of five autonomous chaotic oscillators with tunable series resistance.
    Minati L
    Chaos; 2014 Sep; 24(3):033110. PubMed ID: 25273190
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamical systems, attractors, and neural circuits.
    Miller P
    F1000Res; 2016; 5():. PubMed ID: 27408709
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Effects of Padé Numerical Integration in Simulation of Conservative Chaotic Systems.
    Butusov D; Karimov A; Tutueva A; Kaplun D; Nepomuceno EG
    Entropy (Basel); 2019 Apr; 21(4):. PubMed ID: 33267076
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bistability in bubble formation.
    Colli E; Piassi VS; Tufaile A; Sartorelli JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066215. PubMed ID: 15697492
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coexisting multiple attractors and riddled basins of a memristive system.
    Wang G; Yuan F; Chen G; Zhang Y
    Chaos; 2018 Jan; 28(1):013125. PubMed ID: 29390635
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Attractors and bifurcation diagrams in complex climate models.
    Brunetti M; Ragon C
    Phys Rev E; 2023 May; 107(5-1):054214. PubMed ID: 37329063
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the dynamics of a simplified canonical Chua's oscillator with smooth hyperbolic sine nonlinearity: Hyperchaos, multistability and multistability control.
    Fonzin Fozin T; Megavarna Ezhilarasu P; Njitacke Tabekoueng Z; Leutcho GD; Kengne J; Thamilmaran K; Mezatio AB; Pelap FB
    Chaos; 2019 Nov; 29(11):113105. PubMed ID: 31779351
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamical Analysis of a New Chaotic Fractional Discrete-Time System and Its Control.
    Almatroud AO; Khennaoui AA; Ouannas A; Grassi G; Al-Sawalha MM; Gasri A
    Entropy (Basel); 2020 Nov; 22(12):. PubMed ID: 33266528
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Asymmetry in electrical coupling between neurons alters multistable firing behavior.
    Pisarchik AN; Jaimes-Reátegui R; García-Vellisca MA
    Chaos; 2018 Mar; 28(3):033605. PubMed ID: 29604635
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamical analysis of a periodically forced chaotic chemical oscillator.
    Ramírez-Ávila GM; Kapitaniak T; Gonze D
    Chaos; 2024 Jul; 34(7):. PubMed ID: 39047162
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Periodicity, chaos, and multiple attractors in a memristor-based Shinriki's circuit.
    Kengne J; Njitacke Tabekoueng Z; Kamdoum Tamba V; Nguomkam Negou A
    Chaos; 2015 Oct; 25(10):103126. PubMed ID: 26520092
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.