These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32013511)

  • 1. Time delay effects in the control of synchronous electricity grids.
    Böttcher PC; Otto A; Kettemann S; Agert C
    Chaos; 2020 Jan; 30(1):013122. PubMed ID: 32013511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability and control of power grids with diluted network topology.
    Tumash L; Olmi S; Schöll E
    Chaos; 2019 Dec; 29(12):123105. PubMed ID: 31893638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inertia location and slow network modes determine disturbance propagation in large-scale power grids.
    Pagnier L; Jacquod P
    PLoS One; 2019; 14(3):e0213550. PubMed ID: 30897100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spreading of disturbances in realistic models of transmission grids in dependence on topology, inertia and heterogeneity.
    Nnoli KP; Kettemann S
    Sci Rep; 2021 Dec; 11(1):23742. PubMed ID: 34887453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of network topology on synchrony of oscillatory power grids.
    Rohden M; Sorge A; Witthaut D; Timme M
    Chaos; 2014 Mar; 24(1):013123. PubMed ID: 24697385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Propagation of Disturbances in AC Electricity Grids.
    Tamrakar S; Conrath M; Kettemann S
    Sci Rep; 2018 Apr; 8(1):6459. PubMed ID: 29691445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchronization in electric power networks with inherent heterogeneity up to 100% inverter-based renewable generation.
    Sajadi A; Kenyon RW; Hodge BM
    Nat Commun; 2022 May; 13(1):2490. PubMed ID: 35513388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Power grid stability under perturbation of single nodes: Effects of heterogeneity and internal nodes.
    Wolff MF; Lind PG; Maass P
    Chaos; 2018 Oct; 28(10):103120. PubMed ID: 30384670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous estimation of power system inertia using convolutional neural networks.
    Linaro D; Bizzarri F; Del Giudice D; Pisani C; Giannuzzi GM; Grillo S; Brambilla AM
    Nat Commun; 2023 Jul; 14(1):4440. PubMed ID: 37488100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Duplex PD inertial damping control paradigm for active power decoupling of grid-tied virtual synchronous generator.
    Wang S; Li J; Riaz S; Zaman H; Hao P; Luo Y; Mohammad AS; Al-Ahmadi AA; Ullah N
    Math Biosci Eng; 2022 Aug; 19(12):12031-12057. PubMed ID: 36653985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial neural networks for control of a grid-connected rectifier/inverter under disturbance, dynamic and power converter switching conditions.
    Li S; Fairbank M; Johnson C; Wunsch DC; Alonso E; Proaño JL
    IEEE Trans Neural Netw Learn Syst; 2014 Apr; 25(4):738-50. PubMed ID: 24807951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Adaptive Virtual Impedance Method for Grid-Connected Current Quality Improvement of a Single-Phase Virtual Synchronous Generator under Distorted Grid Voltage.
    Zhong C; Zhang Z; Zhu A; Liang B
    Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Propagation of wind-power-induced fluctuations in power grids.
    Haehne H; Schmietendorf K; Tamrakar S; Peinke J; Kettemann S
    Phys Rev E; 2019 May; 99(5-1):050301. PubMed ID: 31212474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability Analysis of Two Power Converters Control Algorithms Connected to Micro-Grids with Wide Frequency Variation.
    Rohten J; Villarroel F; Pulido E; Muñoz J; Silva J; Perez M
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneities in electricity grids strongly enhance non-Gaussian features of frequency fluctuations under stochastic power input.
    Wolff MF; Schmietendorf K; Lind PG; Kamps O; Peinke J; Maass P
    Chaos; 2019 Oct; 29(10):103149. PubMed ID: 31675815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oscillatory spreading and inertia in power grids.
    Molnar S; Bradley E; Gruchalla K
    Chaos; 2021 Dec; 31(12):123103. PubMed ID: 34972338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing power grid synchronization and stability through time-delayed feedback control.
    Taher H; Olmi S; Schöll E
    Phys Rev E; 2019 Dec; 100(6-1):062306. PubMed ID: 31962463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of synchronization in two-layer power grids.
    Totz CH; Olmi S; Schöll E
    Phys Rev E; 2020 Aug; 102(2-1):022311. PubMed ID: 32942404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On synchronization in power-grids modelled as networks of second-order Kuramoto oscillators.
    Grzybowski JM; Macau EE; Yoneyama T
    Chaos; 2016 Nov; 26(11):113113. PubMed ID: 27908000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Power quality control of an autonomous wind-diesel power system based on hybrid intelligent controller.
    Ko HS; Lee KY; Kang MJ; Kim HC
    Neural Netw; 2008 Dec; 21(10):1439-46. PubMed ID: 18996680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.