These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 32013516)

  • 1. Functionability in complex networks: Leading nodes for the transition from structural to functional networks through remote asynchronization.
    Rosell-Tarragó G; Díaz-Guilera A
    Chaos; 2020 Jan; 30(1):013105. PubMed ID: 32013516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bifurcations in the Kuramoto model on graphs.
    Chiba H; Medvedev GS; Mizuhara MS
    Chaos; 2018 Jul; 28(7):073109. PubMed ID: 30070519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying nodal properties that are crucial for the dynamical robustness of multistable networks.
    Rungta PD; Meena C; Sinha S
    Phys Rev E; 2018 Aug; 98(2-1):022314. PubMed ID: 30253521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perturbation analysis of complete synchronization in networks of phase oscillators.
    Tönjes R; Blasius B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026202. PubMed ID: 19792226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SYNCHRONIZATION OF HETEROGENEOUS OSCILLATORS UNDER NETWORK MODIFICATIONS: PERTURBATION AND OPTIMIZATION OF THE SYNCHRONY ALIGNMENT FUNCTION.
    Taylor D; Skardal PS; Sun J
    SIAM J Appl Math; 2016; 76(5):1984-2008. PubMed ID: 27872501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Particle filtering of dynamical networks: Highlighting observability issues.
    Montanari AN; Aguirre LA
    Chaos; 2019 Mar; 29(3):033118. PubMed ID: 30927843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchronization transition in Sakaguchi-Kuramoto model on complex networks with partial degree-frequency correlation.
    Kundu P; Pal P
    Chaos; 2019 Jan; 29(1):013123. PubMed ID: 30709149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remote synchronization reveals network symmetries and functional modules.
    Nicosia V; Valencia M; Chavez M; Díaz-Guilera A; Latora V
    Phys Rev Lett; 2013 Apr; 110(17):174102. PubMed ID: 23679731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repulsive synchronization in complex networks.
    Gao YC; Fu CJ; Cai SM; Yang C; Eugene Stanley H
    Chaos; 2019 May; 29(5):053130. PubMed ID: 31154772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relation between structural and functional connectivity patterns in complex brain networks.
    Stam CJ; van Straaten EC; Van Dellen E; Tewarie P; Gong G; Hillebrand A; Meier J; Van Mieghem P
    Int J Psychophysiol; 2016 May; 103():149-60. PubMed ID: 25678023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective centrality and explosive synchronization in complex networks.
    Navas A; Villacorta-Atienza JA; Leyva I; Almendral JA; Sendiña-Nadal I; Boccaletti S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062820. PubMed ID: 26764757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex Dynamical Networks Constructed with Fully Controllable Nonlinear Nanomechanical Oscillators.
    Fon W; Matheny MH; Li J; Krayzman L; Cross MC; D'Souza RM; Crutchfield JP; Roukes ML
    Nano Lett; 2017 Oct; 17(10):5977-5983. PubMed ID: 28884582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analyses of antigen dependency networks unveil immune system reorganization between birth and adulthood.
    Madi A; Kenett DY; Bransburg-Zabary S; Merbl Y; Quintana FJ; Boccaletti S; Tauber AI; Cohen IR; Ben-Jacob E
    Chaos; 2011 Mar; 21(1):016109. PubMed ID: 21456851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling conditions for globally stable and robust synchrony of chaotic systems.
    Saha S; Mishra A; Padmanaban E; Bhowmick SK; Roy PK; Dam B; Dana SK
    Phys Rev E; 2017 Jun; 95(6-1):062204. PubMed ID: 28709232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Node vulnerability under finite perturbations in complex networks.
    Gutiérrez R; Del-Pozo F; Boccaletti S
    PLoS One; 2011; 6(6):e20236. PubMed ID: 21698232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronization of networks of chaotic oscillators: Structural and dynamical datasets.
    Sevilla-Escoboza R; Buldú JM
    Data Brief; 2016 Jun; 7():1185-1189. PubMed ID: 27761501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local synchronization in complex networks of coupled oscillators.
    Stout J; Whiteway M; Ott E; Girvan M; Antonsen TM
    Chaos; 2011 Jun; 21(2):025109. PubMed ID: 21721787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective Subnetwork Topology for Synchronizing Interconnected Networks of Coupled Phase Oscillators.
    Yamamoto H; Kubota S; Shimizu FA; Hirano-Iwata A; Niwano M
    Front Comput Neurosci; 2018; 12():17. PubMed ID: 29643771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Explosive synchronization in interlayer phase-shifted Kuramoto oscillators on multiplex networks.
    Kumar A; Jalan S
    Chaos; 2021 Apr; 31(4):041103. PubMed ID: 34251235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition to synchrony in degree-frequency correlated Sakaguchi-Kuramoto model.
    Kundu P; Khanra P; Hens C; Pal P
    Phys Rev E; 2017 Nov; 96(5-1):052216. PubMed ID: 29347755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.