These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 32013693)

  • 1. Quantitative Study of Dual Circadian Oscillator Models under Different Skeleton Photoperiods.
    Flôres DEFL; Oda GA
    J Biol Rhythms; 2020 Jun; 35(3):302-316. PubMed ID: 32013693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced phase resetting in the synchronized suprachiasmatic nucleus network.
    Ramkisoensing A; Gu C; van Engeldorp Gastelaars HM; Michel S; Deboer T; Rohling JH; Meijer JH
    J Biol Rhythms; 2014 Feb; 29(1):4-15. PubMed ID: 24492878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-parametric photic entrainment of Djungarian hamsters with different rhythmic phenotypes.
    Schöttner K; Hauer J; Weinert D
    Chronobiol Int; 2016; 33(5):506-19. PubMed ID: 27031879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Food anticipatory circadian rhythms in mice entrained to long or short day photoperiods.
    Power SC; Mistlberger RE
    Physiol Behav; 2020 Aug; 222():112939. PubMed ID: 32407832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct Components of Photoperiodic Light Are Differentially Encoded by the Mammalian Circadian Clock.
    Tackenberg MC; Hughey JJ; McMahon DG
    J Biol Rhythms; 2020 Aug; 35(4):353-367. PubMed ID: 32527181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feeding and adrenal entrainment stimuli are both necessary for normal circadian oscillation of peripheral clocks in mice housed under different photoperiods.
    Ikeda Y; Sasaki H; Ohtsu T; Shiraishi T; Tahara Y; Shibata S
    Chronobiol Int; 2015 Mar; 32(2):195-210. PubMed ID: 25286135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separate oscillating cell groups in mouse suprachiasmatic nucleus couple photoperiodically to the onset and end of daily activity.
    Inagaki N; Honma S; Ono D; Tanahashi Y; Honma K
    Proc Natl Acad Sci U S A; 2007 May; 104(18):7664-9. PubMed ID: 17463091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the origin and evolution of the dual oscillator model underlying the photoperiodic clockwork in the suprachiasmatic nucleus.
    Evans JA; Schwartz WJ
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2024 Jul; 210(4):503-511. PubMed ID: 37481773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-induced synchronization of the SCN coupled oscillators and implications for entraining the HPA axis.
    Li Y; Androulakis IP
    Front Endocrinol (Lausanne); 2022; 13():960351. PubMed ID: 36387856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photic resetting of intrinsic rhythmicity of the rat suprachiasmatic nucleus under various photoperiods.
    Sumová A; Illnerová H
    Am J Physiol; 1998 Mar; 274(3):R857-63. PubMed ID: 9530255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The proportion of light-responsive neurons determines the limit cycle properties of the suprachiasmatic nucleus.
    Gu C; Ramkisoensing A; Liu Z; Meijer JH; Rohling JH
    J Biol Rhythms; 2014 Feb; 29(1):16-27. PubMed ID: 24492879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypothesis driven single cell dual oscillator mathematical model of circadian rhythms.
    S S; Sriram K
    PLoS One; 2017; 12(5):e0177197. PubMed ID: 28486525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of entrainment of circadian oscillators by skeleton photoperiods using phase transition curves.
    Kawato M; Suzuki R
    Biol Cybern; 1981; 40(2):139-49. PubMed ID: 7236754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring seasonal time within the circadian system: regulation of the suprachiasmatic nuclei by photoperiod.
    Johnston JD
    J Neuroendocrinol; 2005 Jul; 17(7):459-65. PubMed ID: 15946164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. c-Fos rhythm in subdivisions of the rat suprachiasmatic nucleus under artificial and natural photoperiods.
    Jác M; Sumová A; Illnerová H
    Am J Physiol Regul Integr Comp Physiol; 2000 Dec; 279(6):R2270-6. PubMed ID: 11080095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of photoperiod duration and light-dark transitions on entrainment of Per1 and Per2 gene and protein expression in subdivisions of the mouse suprachiasmatic nucleus.
    Sosniyenko S; Hut RA; Daan S; Sumová A
    Eur J Neurosci; 2009 Nov; 30(9):1802-14. PubMed ID: 19840112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forced desynchronization of dual circadian oscillators within the rat suprachiasmatic nucleus.
    de la Iglesia HO; Cambras T; Schwartz WJ; Díez-Noguera A
    Curr Biol; 2004 May; 14(9):796-800. PubMed ID: 15120072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Daylength Shapes Entrainment Patterns to Artificial Photoperiods in a Subterranean Rodent.
    Improta GC; Flôres DEFL; Oda GA; Valentinuzzi VS
    J Biol Rhythms; 2022 Jun; 37(3):283-295. PubMed ID: 35403483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric control of short day response in European hamsters.
    Monecke S; Malan A; Wollnik F
    J Biol Rhythms; 2006 Aug; 21(4):290-300. PubMed ID: 16864649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clock gene daily profiles and their phase relationship in the rat suprachiasmatic nucleus are affected by photoperiod.
    Sumová A; Jác M; Sládek M; Sauman I; Illnerová H
    J Biol Rhythms; 2003 Apr; 18(2):134-44. PubMed ID: 12693868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.