These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
354 related articles for article (PubMed ID: 32013925)
1. Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone. Chicco D; Jurman G BMC Med Inform Decis Mak; 2020 Feb; 20(1):16. PubMed ID: 32013925 [TBL] [Abstract][Full Text] [Related]
2. Score and Correlation Coefficient-Based Feature Selection for Predicting Heart Failure Diagnosis by Using Machine Learning Algorithms. Senan EM; Abunadi I; Jadhav ME; Fati SM Comput Math Methods Med; 2021; 2021():8500314. PubMed ID: 34966445 [TBL] [Abstract][Full Text] [Related]
3. Machine Learning-Based Mortality Prediction in Chronic Kidney Disease among Heart Failure Patients: Insights and Outcomes from the Jordanian Heart Failure Registry. Izraiq M; Alawaisheh R; Ibdah R; Dabbas A; Ahmed YB; Mughrabi Sabbagh AL; Zuraik A; Ababneh M; Toubasi AA; Al-Bkoor B; Abu-Hantash H Medicina (Kaunas); 2024 May; 60(5):. PubMed ID: 38793014 [No Abstract] [Full Text] [Related]
4. Phenogrouping heart failure with preserved or mildly reduced ejection fraction using electronic health record data. Soltani F; Jenkins DA; Kaura A; Bradley J; Black N; Farrant JP; Williams SG; Mulla A; Glampson B; Davies J; Papadimitriou D; Woods K; Shah AD; Thursz MR; Williams B; Asselbergs FW; Mayer EK; Herbert C; Grant S; Curzen N; Squire I; Johnson T; O'Gallagher K; Shah AM; Perera D; Kharbanda R; Patel RS; Channon KM; Lee R; Peek N; Mayet J; Miller CA BMC Cardiovasc Disord; 2024 Jul; 24(1):343. PubMed ID: 38969974 [TBL] [Abstract][Full Text] [Related]
5. Data analytics and clinical feature ranking of medical records of patients with sepsis. Chicco D; Oneto L BioData Min; 2021 Feb; 14(1):12. PubMed ID: 33536030 [TBL] [Abstract][Full Text] [Related]
6. Early Detection of Heart Failure With Reduced Ejection Fraction Using Perioperative Data Among Noncardiac Surgical Patients: A Machine-Learning Approach. Mathis MR; Engoren MC; Joo H; Maile MD; Aaronson KD; Burns ML; Sjoding MW; Douville NJ; Janda AM; Hu Y; Najarian K; Kheterpal S Anesth Analg; 2020 May; 130(5):1188-1200. PubMed ID: 32287126 [TBL] [Abstract][Full Text] [Related]
7. Machine Learning Prediction of Mortality and Hospitalization in Heart Failure With Preserved Ejection Fraction. Angraal S; Mortazavi BJ; Gupta A; Khera R; Ahmad T; Desai NR; Jacoby DL; Masoudi FA; Spertus JA; Krumholz HM JACC Heart Fail; 2020 Jan; 8(1):12-21. PubMed ID: 31606361 [TBL] [Abstract][Full Text] [Related]
8. Genetic and ElectroNic medIcal records to predict oUtcomeS in Heart Failure patients (GENIUS-HF) - design and rationale. Gioli-Pereira L; Bernardez-Pereira S; Goulart Marcondes-Braga F; Rocha Spina JM; Muniz Miranda da Silva R; Evangelista Ferreira N; Bacal F; Fernandes F; Mansur AJ; Krieger JE; Costa Pereira A BMC Cardiovasc Disord; 2014 Mar; 14():32. PubMed ID: 24592820 [TBL] [Abstract][Full Text] [Related]
9. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
11. A deep learning model for early risk prediction of heart failure with preserved ejection fraction by DNA methylation profiles combined with clinical features. Zhao X; Sui Y; Ruan X; Wang X; He K; Dong W; Qu H; Fang X Clin Epigenetics; 2022 Jan; 14(1):11. PubMed ID: 35045866 [TBL] [Abstract][Full Text] [Related]
12. Comparison of Machine Learning Algorithms for Predicting Hospital Readmissions and Worsening Heart Failure Events in Patients With Heart Failure With Reduced Ejection Fraction: Modeling Study. Ru B; Tan X; Liu Y; Kannapur K; Ramanan D; Kessler G; Lautsch D; Fonarow G JMIR Form Res; 2023 Apr; 7():e41775. PubMed ID: 37067873 [TBL] [Abstract][Full Text] [Related]
13. Machine Learning for Mortality Prediction in Patients With Heart Failure With Mildly Reduced Ejection Fraction. Tian P; Liang L; Zhao X; Huang B; Feng J; Huang L; Huang Y; Zhai M; Zhou Q; Zhang J; Zhang Y J Am Heart Assoc; 2023 Jun; 12(12):e029124. PubMed ID: 37301744 [TBL] [Abstract][Full Text] [Related]
14. Comparison of Machine Learning Methods With Traditional Models for Use of Administrative Claims With Electronic Medical Records to Predict Heart Failure Outcomes. Desai RJ; Wang SV; Vaduganathan M; Evers T; Schneeweiss S JAMA Netw Open; 2020 Jan; 3(1):e1918962. PubMed ID: 31922560 [TBL] [Abstract][Full Text] [Related]
15. Prediction of left ventricular ejection fraction changes in heart failure patients using machine learning and electronic health records: a multi-site study. Adekkanattu P; Rasmussen LV; Pacheco JA; Kabariti J; Stone DJ; Yu Y; Jiang G; Luo Y; Brandt PS; Xu Z; Vekaria V; Xu J; Wang F; Benda NC; Peng Y; Goyal P; Ahmad FS; Pathak J Sci Rep; 2023 Jan; 13(1):294. PubMed ID: 36609415 [TBL] [Abstract][Full Text] [Related]
16. Arterial Stiffness and Risk of Overall Heart Failure, Heart Failure With Preserved Ejection Fraction, and Heart Failure With Reduced Ejection Fraction: The Health ABC Study (Health, Aging, and Body Composition). Pandey A; Khan H; Newman AB; Lakatta EG; Forman DE; Butler J; Berry JD Hypertension; 2017 Feb; 69(2):267-274. PubMed ID: 27993954 [TBL] [Abstract][Full Text] [Related]
17. Development and validation of a heart failure with preserved ejection fraction cohort using electronic medical records. Patel YR; Robbins JM; Kurgansky KE; Imran T; Orkaby AR; McLean RR; Ho YL; Cho K; Michael Gaziano J; Djousse L; Gagnon DR; Joseph J BMC Cardiovasc Disord; 2018 Jun; 18(1):128. PubMed ID: 29954337 [TBL] [Abstract][Full Text] [Related]