These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 32014062)

  • 21. Profiling of chromatin accessibility identifies transcription factor binding sites across the genome of Aspergillus species.
    Huang L; Li X; Dong L; Wang B; Pan L
    BMC Biol; 2021 Sep; 19(1):189. PubMed ID: 34488759
    [TBL] [Abstract][Full Text] [Related]  

  • 22. methyl-ATAC-seq measures DNA methylation at accessible chromatin.
    Spektor R; Tippens ND; Mimoso CA; Soloway PD
    Genome Res; 2019 Jun; 29(6):969-977. PubMed ID: 31160376
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome-Wide Analysis of Chromatin Accessibility in Arabidopsis Infected with Pseudomonas syringae.
    Bordiya Y; Kang HG
    Methods Mol Biol; 2017; 1578():263-272. PubMed ID: 28220432
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NicE-seq: high resolution open chromatin profiling.
    Ponnaluri VKC; Zhang G; Estève PO; Spracklin G; Sian S; Xu SY; Benoukraf T; Pradhan S
    Genome Biol; 2017 Jun; 18(1):122. PubMed ID: 28655330
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MPE-seq, a new method for the genome-wide analysis of chromatin structure.
    Ishii H; Kadonaga JT; Ren B
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):E3457-65. PubMed ID: 26080409
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mapping and characterization of DNase I hypersensitive sites in Arabidopsis chromatin.
    Kodama Y; Nagaya S; Shinmyo A; Kato K
    Plant Cell Physiol; 2007 Mar; 48(3):459-70. PubMed ID: 17283013
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploring Chromatin Accessibility in Mouse Epiblast Stem Cells with ATAC-Seq.
    Salehin N; Santucci N; Osteil P; Tam PPL
    Methods Mol Biol; 2022; 2490():93-100. PubMed ID: 35486242
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ATAC-seq Optimization for Cancer Epigenetics Research.
    Cooper M; Ray A; Bhattacharya A; Dhasarathy A; Takaku M
    J Vis Exp; 2022 Jun; (184):. PubMed ID: 35848835
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative analysis of cis-regulatory elements in transcription with KAS-ATAC-seq.
    Lyu R; Gao Y; Wu T; Ye C; Wang P; He C
    Nat Commun; 2024 Aug; 15(1):6852. PubMed ID: 39127768
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cold stress induces enhanced chromatin accessibility and bivalent histone modifications H3K4me3 and H3K27me3 of active genes in potato.
    Zeng Z; Zhang W; Marand AP; Zhu B; Buell CR; Jiang J
    Genome Biol; 2019 Jun; 20(1):123. PubMed ID: 31208436
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ATAC-Seq Analysis of Accessible Chromatin: From Experimental Steps to Data Analysis.
    Tatara M; Ikeda T; Namekawa SH; Maezawa S
    Methods Mol Biol; 2023; 2577():65-81. PubMed ID: 36173566
    [TBL] [Abstract][Full Text] [Related]  

  • 32. XL-DNase-seq: improved footprinting of dynamic transcription factors.
    Oh KS; Ha J; Baek S; Sung MH
    Epigenetics Chromatin; 2019 Jun; 12(1):30. PubMed ID: 31164146
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genomic methods in profiling DNA accessibility and factor localization.
    Klein DC; Hainer SJ
    Chromosome Res; 2020 Mar; 28(1):69-85. PubMed ID: 31776829
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genomic Features of Open Chromatin Regions (OCRs) in Wild Soybean and Their Effects on Gene Expressions.
    Huang MK; Zhang L; Zhou LM; Yung WS; Li MW; Lam HM
    Genes (Basel); 2021 Apr; 12(5):. PubMed ID: 33923056
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome-wide analysis of histone modifications can contribute to the identification of candidate cis-regulatory regions in the threespine stickleback fish.
    Okude G; Yamasaki YY; Toyoda A; Mori S; Kitano J
    BMC Genomics; 2024 Jul; 25(1):685. PubMed ID: 38992624
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interplay between active chromatin marks and RNA-directed DNA methylation in Arabidopsis thaliana.
    Greenberg MV; Deleris A; Hale CJ; Liu A; Feng S; Jacobsen SE
    PLoS Genet; 2013 Nov; 9(11):e1003946. PubMed ID: 24244201
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of the accessible genome in the human malaria parasite Plasmodium falciparum.
    Ruiz JL; Tena JJ; Bancells C; Cortés A; Gómez-Skarmeta JL; Gómez-Díaz E
    Nucleic Acids Res; 2018 Oct; 46(18):9414-9431. PubMed ID: 30016465
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detect accessible chromatin using ATAC-sequencing, from principle to applications.
    Sun Y; Miao N; Sun T
    Hereditas; 2019; 156():29. PubMed ID: 31427911
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploring the relationship between intron retention and chromatin accessibility in plants.
    Ullah F; Hamilton M; Reddy ASN; Ben-Hur A
    BMC Genomics; 2018 Jan; 19(1):21. PubMed ID: 29304739
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genomic Footprinting Analyses from DNase-seq Data to Construct Gene Regulatory Networks.
    Moyano TC; Gutiérrez RA; Alvarez JM
    Methods Mol Biol; 2021; 2328():25-46. PubMed ID: 34251618
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.