These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 32014389)

  • 21. Multicyclic Peptides as Scaffolds for the Development of Tumor Targeting Agents.
    Loktev A; Haberkorn U; Mier W
    Curr Med Chem; 2017; 24(20):2141-2155. PubMed ID: 28302013
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Designed Heme-Cage β-Sheet Miniproteins.
    D'Souza A; Wu X; Yeow EKL; Bhattacharjya S
    Angew Chem Int Ed Engl; 2017 May; 56(21):5904-5908. PubMed ID: 28440962
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineered knottin peptides as diagnostics, therapeutics, and drug delivery vehicles.
    Kintzing JR; Cochran JR
    Curr Opin Chem Biol; 2016 Oct; 34():143-150. PubMed ID: 27642714
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Replacing antibodies: engineering new binding proteins.
    Banta S; Dooley K; Shur O
    Annu Rev Biomed Eng; 2013; 15():93-113. PubMed ID: 23642248
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A cystine-knot miniprotein from tomato fruit inhibits endothelial cell migration and angiogenesis by affecting vascular endothelial growth factor receptor (VEGFR) activation and nitric oxide production.
    Treggiari D; Zoccatelli G; Molesini B; Degan M; Rotino GL; Sala T; Cavallini C; MacRae CA; Minuz P; Pandolfini T
    Mol Nutr Food Res; 2015 Nov; 59(11):2255-66. PubMed ID: 26255647
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Shining a light on the dark proteome: Non-canonical open reading frames and their encoded miniproteins as a new frontier in cancer biology.
    Posner Z; Yannuzzi I; Prensner JR
    Protein Sci; 2023 Aug; 32(8):e4708. PubMed ID: 37350227
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CXC-Mediated Cellular Uptake of Miniproteins: Forsaking "Arginine Magic".
    Meng X; Li T; Zhao Y; Wu C
    ACS Chem Biol; 2018 Nov; 13(11):3078-3086. PubMed ID: 30272440
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exceptionally high-affinity Ras binders that remodel its effector domain.
    McGee JH; Shim SY; Lee SJ; Swanson PK; Jiang SY; Durney MA; Verdine GL
    J Biol Chem; 2018 Mar; 293(9):3265-3280. PubMed ID: 29282294
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mammalian Surface Display Screening of Diverse Cystine-Dense Peptide Libraries for Difficult-to-Drug Targets.
    Crook ZR; Sevilla GP; Mhyre AJ; Olson JM
    Methods Mol Biol; 2020; 2070():363-396. PubMed ID: 31625107
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design of miniproteins by the transfer of active sites onto small-size scaffolds.
    Stricher F; Martin L; Vita C
    Methods Mol Biol; 2006; 340():113-49. PubMed ID: 16957335
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Targeting the tumor vasculature with engineered cystine-knot miniproteins.
    Lui BG; Salomon N; Wüstehube-Lausch J; Daneschdar M; Schmoldt HU; Türeci Ö; Sahin U
    Nat Commun; 2020 Jan; 11(1):295. PubMed ID: 31941901
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CD4 mimetic miniproteins: potent anti-HIV compounds with promising activity as microbicides.
    Van Herrewege Y; Morellato L; Descours A; Aerts L; Michiels J; Heyndrickx L; Martin L; Vanham G
    J Antimicrob Chemother; 2008 Apr; 61(4):818-26. PubMed ID: 18270220
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Peptide-based inhibitors of protein-protein interactions.
    Wójcik P; Berlicki Ł
    Bioorg Med Chem Lett; 2016 Feb; 26(3):707-713. PubMed ID: 26764190
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RNA Drugs and RNA Targets for Small Molecules: Principles, Progress, and Challenges.
    Yu AM; Choi YH; Tu MJ
    Pharmacol Rev; 2020 Oct; 72(4):862-898. PubMed ID: 32929000
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxidative folding of cystine-rich peptides vs regioselective cysteine pairing strategies.
    Moroder L; Besse D; Musiol HJ; Rudolph-Böhner S; Siedler F
    Biopolymers; 1996; 40(2):207-34. PubMed ID: 8785364
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A fast method for large-scale de novo peptide and miniprotein structure prediction.
    Maupetit J; Derreumaux P; Tufféry P
    J Comput Chem; 2010 Mar; 31(4):726-38. PubMed ID: 19569182
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Comprehensive Review on Current Advances in Peptide Drug Development and Design.
    Lee AC; Harris JL; Khanna KK; Hong JH
    Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31091705
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chemical synthesis, backbone cyclization and oxidative folding of cystine-knot peptides: promising scaffolds for applications in drug design.
    Reinwarth M; Nasu D; Kolmar H; Avrutina O
    Molecules; 2012 Oct; 17(11):12533-52. PubMed ID: 23095896
    [TBL] [Abstract][Full Text] [Related]  

  • 39. All-atom ab initio native structure prediction of a mixed fold (1FME): a comparison of structural and folding characteristics of various beta beta alpha miniproteins.
    Kim E; Jang S; Pak Y
    J Chem Phys; 2009 Nov; 131(19):195102. PubMed ID: 19929079
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design of human ACE2 mimic miniprotein binders that interact with RBD of SARS-CoV-2 variants of concerns.
    Gaur NK; Khakerwala Z; Makde RD
    J Biomol Struct Dyn; 2024 Feb; ():1-13. PubMed ID: 38315516
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.