BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 32014469)

  • 1. Locust can detect β-1, 3-glucan of the fungal pathogen before penetration and defend infection via the Toll signaling pathway.
    Zheng X; Li S; Si Y; Hu J; Xia Y
    Dev Comp Immunol; 2020 May; 106():103636. PubMed ID: 32014469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative transcriptomic analysis of immune responses of the migratory locust, Locusta migratoria, to challenge by the fungal insect pathogen, Metarhizium acridum.
    Zhang W; Chen J; Keyhani NO; Zhang Z; Li S; Xia Y
    BMC Genomics; 2015 Oct; 16():867. PubMed ID: 26503342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. β-1,3-Glucan recognition protein (βGRP) is essential for resistance against fungal pathogen and opportunistic pathogenic gut bacteria in Locusta migratoria manilensis.
    Zheng X; Xia Y
    Dev Comp Immunol; 2012 Mar; 36(3):602-9. PubMed ID: 22062247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toll signal pathway activating eicosanoid biosynthesis shares its conserved upstream recognition components in a lepidopteran Spodoptera exigua upon infection by Metarhizium rileyi, an entomopathogenic fungus.
    Roy MC; Kim Y
    J Invertebr Pathol; 2022 Feb; 188():107707. PubMed ID: 34952100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disruption of an adenylate-forming reductase required for conidiation, increases virulence of the insect pathogenic fungus Metarhizium acridum by enhancing cuticle invasion.
    Guo H; Wang H; Keyhani NO; Xia Y; Peng G
    Pest Manag Sci; 2020 Feb; 76(2):758-768. PubMed ID: 31392798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased virulence in the locust-specific fungal pathogen Metarhizium acridum expressing dsRNAs targeting the host F
    Hu J; Xia Y
    Pest Manag Sci; 2019 Jan; 75(1):180-186. PubMed ID: 29797423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial and temporal transcriptomic analyses reveal locust initiation of immune responses to Metarhizium acridum at the pre-penetration stage.
    Zhang W; Zheng X; Chen J; Keyhani NO; Cai K; Xia Y
    Dev Comp Immunol; 2020 Mar; 104():103524. PubMed ID: 31634520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large scale expressed sequence tag (EST) analysis of Metarhizium acridum infecting Locusta migratoria reveals multiple strategies for fungal adaptation to the host cuticle.
    He M; Hu J; Xia Y
    Curr Genet; 2012 Dec; 58(5-6):265-79. PubMed ID: 23052419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular identification and related functional characterization of the FKBP52 gene in immunity of Locusta migratoria manilensis (Orthoptera: Oedipodidae).
    Wang M; Tian Y; Zhang N; Nong X; Tu X; Zhang Z; Huang Y; Wang Y; Zhuang L; Cha G; Liu T; Wang G
    J Econ Entomol; 2024 Jun; 117(3):1130-1140. PubMed ID: 38579138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of scorpion toxin LqhIT2 increases the virulence of Metarhizium acridum towards Locusta migratoria manilensis.
    Peng G; Xia Y
    J Ind Microbiol Biotechnol; 2014 Nov; 41(11):1659-66. PubMed ID: 25168679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HYD3, a conidial hydrophobin of the fungal entomopathogen Metarhizium acridum induces the immunity of its specialist host locust.
    Jiang ZY; Ligoxygakis P; Xia YX
    Int J Biol Macromol; 2020 Dec; 165(Pt A):1303-1311. PubMed ID: 33022346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immune responses of locusts to challenge with the pathogenic fungus Metarhizium or high doses of laminarin.
    Mullen LM; Goldsworthy GJ
    J Insect Physiol; 2006 Apr; 52(4):389-98. PubMed ID: 16413931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential responses of the antennal proteome of male and female migratory locusts to infection by a fungal pathogen.
    Zheng R; Xia Y; Keyhani NO
    J Proteomics; 2021 Feb; 232():104050. PubMed ID: 33217581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wright-Giemsa staining to observe phagocytes in Locusta migratoria infected with Metarhizium acridum.
    Yu Y; Cao Y; Xia Y; Liu F
    J Invertebr Pathol; 2016 Sep; 139():19-24. PubMed ID: 27345377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An insect chemosensory protein facilitates locust avoidance to fungal pathogens via recognition of fungal volatiles.
    Zheng R; Xie M; Keyhani NO; Xia Y
    Int J Biol Macromol; 2023 Dec; 253(Pt 6):127389. PubMed ID: 37827395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Metarhizium anisopliae (IMI330189) and Mad1 protein on enzymatic activities and Toll-related genes of migratory locust.
    Abro NA; Wang G; Ullah H; Long GL; Hao K; Nong X; Cai N; Tu X; Zhang Z
    Environ Sci Pollut Res Int; 2019 Jun; 26(17):17797-17808. PubMed ID: 31037535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction and preliminary analysis of a normalized cDNA library from Locusta migratoria manilensis topically infected with Metarhizium anisopliae var. acridum.
    Wang J; Xia Y
    J Insect Physiol; 2010 Aug; 56(8):998-1002. PubMed ID: 20470782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The carbon catabolite repressor CreA is an essential virulence factor of Metarhizium acridum against Locusta migratoria.
    Song D; Jin Y; Shi Y; Xia Y; Peng G
    Pest Manag Sci; 2022 Aug; 78(8):3676-3684. PubMed ID: 35613131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 20-Hydroxyecdysone activates PGRP-SA mediated immune response in Locusta migratoria.
    Han P; Han J; Fan J; Zhang M; Ma E; Li S; Fan R; Zhang J
    Dev Comp Immunol; 2017 Jul; 72():128-139. PubMed ID: 28254619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of an insecticidal scorpion toxin (BjαIT) gene into Metarhizium acridum enhances fungal virulence towards Locusta migratoria manilensis.
    Peng G; Xia Y
    Pest Manag Sci; 2015 Jan; 71(1):58-64. PubMed ID: 25488590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.