These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 32014469)
1. Locust can detect β-1, 3-glucan of the fungal pathogen before penetration and defend infection via the Toll signaling pathway. Zheng X; Li S; Si Y; Hu J; Xia Y Dev Comp Immunol; 2020 May; 106():103636. PubMed ID: 32014469 [TBL] [Abstract][Full Text] [Related]
2. Comparative transcriptomic analysis of immune responses of the migratory locust, Locusta migratoria, to challenge by the fungal insect pathogen, Metarhizium acridum. Zhang W; Chen J; Keyhani NO; Zhang Z; Li S; Xia Y BMC Genomics; 2015 Oct; 16():867. PubMed ID: 26503342 [TBL] [Abstract][Full Text] [Related]
3. β-1,3-Glucan recognition protein (βGRP) is essential for resistance against fungal pathogen and opportunistic pathogenic gut bacteria in Locusta migratoria manilensis. Zheng X; Xia Y Dev Comp Immunol; 2012 Mar; 36(3):602-9. PubMed ID: 22062247 [TBL] [Abstract][Full Text] [Related]
4. Toll signal pathway activating eicosanoid biosynthesis shares its conserved upstream recognition components in a lepidopteran Spodoptera exigua upon infection by Metarhizium rileyi, an entomopathogenic fungus. Roy MC; Kim Y J Invertebr Pathol; 2022 Feb; 188():107707. PubMed ID: 34952100 [TBL] [Abstract][Full Text] [Related]
5. Disruption of an adenylate-forming reductase required for conidiation, increases virulence of the insect pathogenic fungus Metarhizium acridum by enhancing cuticle invasion. Guo H; Wang H; Keyhani NO; Xia Y; Peng G Pest Manag Sci; 2020 Feb; 76(2):758-768. PubMed ID: 31392798 [TBL] [Abstract][Full Text] [Related]
6. Increased virulence in the locust-specific fungal pathogen Metarhizium acridum expressing dsRNAs targeting the host F Hu J; Xia Y Pest Manag Sci; 2019 Jan; 75(1):180-186. PubMed ID: 29797423 [TBL] [Abstract][Full Text] [Related]
7. Spatial and temporal transcriptomic analyses reveal locust initiation of immune responses to Metarhizium acridum at the pre-penetration stage. Zhang W; Zheng X; Chen J; Keyhani NO; Cai K; Xia Y Dev Comp Immunol; 2020 Mar; 104():103524. PubMed ID: 31634520 [TBL] [Abstract][Full Text] [Related]
8. Large scale expressed sequence tag (EST) analysis of Metarhizium acridum infecting Locusta migratoria reveals multiple strategies for fungal adaptation to the host cuticle. He M; Hu J; Xia Y Curr Genet; 2012 Dec; 58(5-6):265-79. PubMed ID: 23052419 [TBL] [Abstract][Full Text] [Related]
9. Molecular identification and related functional characterization of the FKBP52 gene in immunity of Locusta migratoria manilensis (Orthoptera: Oedipodidae). Wang M; Tian Y; Zhang N; Nong X; Tu X; Zhang Z; Huang Y; Wang Y; Zhuang L; Cha G; Liu T; Wang G J Econ Entomol; 2024 Jun; 117(3):1130-1140. PubMed ID: 38579138 [TBL] [Abstract][Full Text] [Related]
10. Expression of scorpion toxin LqhIT2 increases the virulence of Metarhizium acridum towards Locusta migratoria manilensis. Peng G; Xia Y J Ind Microbiol Biotechnol; 2014 Nov; 41(11):1659-66. PubMed ID: 25168679 [TBL] [Abstract][Full Text] [Related]
11. HYD3, a conidial hydrophobin of the fungal entomopathogen Metarhizium acridum induces the immunity of its specialist host locust. Jiang ZY; Ligoxygakis P; Xia YX Int J Biol Macromol; 2020 Dec; 165(Pt A):1303-1311. PubMed ID: 33022346 [TBL] [Abstract][Full Text] [Related]
12. Immune responses of locusts to challenge with the pathogenic fungus Metarhizium or high doses of laminarin. Mullen LM; Goldsworthy GJ J Insect Physiol; 2006 Apr; 52(4):389-98. PubMed ID: 16413931 [TBL] [Abstract][Full Text] [Related]
13. Differential responses of the antennal proteome of male and female migratory locusts to infection by a fungal pathogen. Zheng R; Xia Y; Keyhani NO J Proteomics; 2021 Feb; 232():104050. PubMed ID: 33217581 [TBL] [Abstract][Full Text] [Related]
14. Wright-Giemsa staining to observe phagocytes in Locusta migratoria infected with Metarhizium acridum. Yu Y; Cao Y; Xia Y; Liu F J Invertebr Pathol; 2016 Sep; 139():19-24. PubMed ID: 27345377 [TBL] [Abstract][Full Text] [Related]
15. An insect chemosensory protein facilitates locust avoidance to fungal pathogens via recognition of fungal volatiles. Zheng R; Xie M; Keyhani NO; Xia Y Int J Biol Macromol; 2023 Dec; 253(Pt 6):127389. PubMed ID: 37827395 [TBL] [Abstract][Full Text] [Related]
16. Influence of Metarhizium anisopliae (IMI330189) and Mad1 protein on enzymatic activities and Toll-related genes of migratory locust. Abro NA; Wang G; Ullah H; Long GL; Hao K; Nong X; Cai N; Tu X; Zhang Z Environ Sci Pollut Res Int; 2019 Jun; 26(17):17797-17808. PubMed ID: 31037535 [TBL] [Abstract][Full Text] [Related]
17. Construction and preliminary analysis of a normalized cDNA library from Locusta migratoria manilensis topically infected with Metarhizium anisopliae var. acridum. Wang J; Xia Y J Insect Physiol; 2010 Aug; 56(8):998-1002. PubMed ID: 20470782 [TBL] [Abstract][Full Text] [Related]
18. The carbon catabolite repressor CreA is an essential virulence factor of Metarhizium acridum against Locusta migratoria. Song D; Jin Y; Shi Y; Xia Y; Peng G Pest Manag Sci; 2022 Aug; 78(8):3676-3684. PubMed ID: 35613131 [TBL] [Abstract][Full Text] [Related]
19. 20-Hydroxyecdysone activates PGRP-SA mediated immune response in Locusta migratoria. Han P; Han J; Fan J; Zhang M; Ma E; Li S; Fan R; Zhang J Dev Comp Immunol; 2017 Jul; 72():128-139. PubMed ID: 28254619 [TBL] [Abstract][Full Text] [Related]
20. Integration of an insecticidal scorpion toxin (BjαIT) gene into Metarhizium acridum enhances fungal virulence towards Locusta migratoria manilensis. Peng G; Xia Y Pest Manag Sci; 2015 Jan; 71(1):58-64. PubMed ID: 25488590 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]