These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 32014515)
1. Spinal caspase-6 contributes to remifentanil-induced hyperalgesia via regulating CCL21/CXCR3 pathway in rats. Wang C; Li Q; Jia Z; Zhang H; Li Y; Zhao Q; Su L; Yu Y; Xu R Neurosci Lett; 2020 Mar; 721():134802. PubMed ID: 32014515 [TBL] [Abstract][Full Text] [Related]
2. Chemokine CCL7 regulates spinal phosphorylation of GluA1-containing AMPA receptor via interleukin-18 in remifentanil-induced hyperalgesia in rats. Qiang Z; Yu W Neurosci Lett; 2019 Oct; 711():134440. PubMed ID: 31430547 [TBL] [Abstract][Full Text] [Related]
3. CXCL13 regulates the trafficking of GluN2B-containing NMDA receptor via IL-17 in the development of remifentanil-induced hyperalgesia in rats. Zhu M; Yuan ST; Yu WL; Jia LL; Sun Y Neurosci Lett; 2017 May; 648():26-33. PubMed ID: 28359934 [TBL] [Abstract][Full Text] [Related]
4. Artesunate Reduces Remifentanil-induced Hyperalgesia and Peroxiredoxin-3 Hyperacetylation via Modulating Spinal Metabotropic Glutamate Receptor 5 in Rats. Zhang L; Zhao Y; Gao T; Zhang H; Li J; Wang G; Wang C; Li Y Neuroscience; 2022 Apr; 487():88-98. PubMed ID: 35026318 [TBL] [Abstract][Full Text] [Related]
5. Up-regulation of CXCL1 and CXCR2 contributes to remifentanil-induced hypernociception via modulating spinal NMDA receptor expression and phosphorylation in rats. Yang LH; Xu GM; Wang Y Neurosci Lett; 2016 Jul; 626():135-41. PubMed ID: 26724371 [TBL] [Abstract][Full Text] [Related]
6. Involvement of Spinal PKMζ Expression and Phosphorylation in Remifentanil-Induced Long-Term Hyperalgesia in Rats. Zhao Q; Zhang L; Shu R; Wang C; Yu Y; Wang H; Wang G Cell Mol Neurobiol; 2017 May; 37(4):643-653. PubMed ID: 27380044 [TBL] [Abstract][Full Text] [Related]
7. Prevention of Remifentanil Induced Postoperative Hyperalgesia by Dexmedetomidine via Regulating the Trafficking and Function of Spinal NMDA Receptors as well as PKC and CaMKII Level In Vivo and In Vitro. Yuan Y; Sun Z; Chen Y; Zheng Y; Xie KL; He Y; Wang Z; Wang GL; Yu YH PLoS One; 2017; 12(2):e0171348. PubMed ID: 28182698 [TBL] [Abstract][Full Text] [Related]
8. Spinal WNT pathway contributes to remifentanil induced hyperalgesia through regulating fractalkine and CX3CR1 in rats. Gong G; Hu L; Qin F; Yin L; Yi X; Yuan L; Wu W Neurosci Lett; 2016 Oct; 633():21-27. PubMed ID: 27616703 [TBL] [Abstract][Full Text] [Related]
9. Magnesium sulphate attenuate remifentanil-induced postoperative hyperalgesia via regulating tyrosine phosphorylation of the NR Sun J; Lin H; He G; Lin W; Yang J BMC Anesthesiol; 2017 Feb; 17(1):30. PubMed ID: 28222697 [TBL] [Abstract][Full Text] [Related]
10. Attenuation of Remifentanil-Induced Hyperalgesia by Betulinic Acid Associates with Inhibiting Oxidative Stress and Inflammation in Spinal Dorsal Horn. Lv CC; Xia ML; Shu SJ; Chen F; Jiang LS Pharmacology; 2018; 102(5-6):300-306. PubMed ID: 30253391 [TBL] [Abstract][Full Text] [Related]
11. Dichotomy of CCL21 and CXCR3 in nerve injury-evoked and autoimmunity-evoked hyperalgesia. Schmitz K; Pickert G; Wijnvoord N; Häussler A; Tegeder I Brain Behav Immun; 2013 Aug; 32():186-200. PubMed ID: 23643685 [TBL] [Abstract][Full Text] [Related]
12. Glycogen synthase kinase-3β contributes to remifentanil-induced postoperative hyperalgesia via regulating N-methyl-D-aspartate receptor trafficking. Yuan Y; Wang JY; Yuan F; Xie KL; Yu YH; Wang GL Anesth Analg; 2013 Feb; 116(2):473-81. PubMed ID: 23267003 [TBL] [Abstract][Full Text] [Related]
13. KCC2 receptor upregulation potentiates antinociceptive effect of GABAAR agonist on remifentanil-induced hyperalgesia. Gao Y; Zhan W; Jin Y; Chen X; Cai J; Zhou X; Huang X; Zhao Q; Wang W; Sun J Mol Pain; 2022; 18():17448069221082880. PubMed ID: 35352582 [TBL] [Abstract][Full Text] [Related]
14. Toll-like receptor 4 signaling pathway in sensory neurons mediates remifentanil-induced postoperative hyperalgesia via transient receptor potential ankyrin 1. Liu X; Gong R; Peng L; Zhao J Mol Pain; 2023; 19():17448069231158290. PubMed ID: 36733260 [No Abstract] [Full Text] [Related]
15. P2X4 receptor in the dorsal horn contributes to BDNF/TrkB and AMPA receptor activation in the pathogenesis of remifentanil-induced postoperative hyperalgesia in rats. Fu R; Li S; Li S; Gong X; Zhou G; Wang Y; Ding R; Zhu Z; Zhang L; Li Y Neurosci Lett; 2021 Apr; 750():135773. PubMed ID: 33639220 [TBL] [Abstract][Full Text] [Related]
16. Annexin 1 inhibits remifentanil-induced hyperalgesia and NMDA receptor phosphorylation via regulating spinal CXCL12/CXCR4 in rats. Li T; Wang H; Wang J; Chen Y; Yang C; Zhao M; Wang G; Yang Z Neurosci Res; 2019 Jul; 144():48-55. PubMed ID: 30120960 [TBL] [Abstract][Full Text] [Related]
17. Spinal Protein Kinase Mζ Regulates α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptor Trafficking and Dendritic Spine Plasticity via Kalirin-7 in the Pathogenesis of Remifentanil-induced Postincisional Hyperalgesia in Rats. Zhang L; Guo S; Zhao Q; Li Y; Song C; Wang C; Yu Y; Wang G Anesthesiology; 2018 Jul; 129(1):173-186. PubMed ID: 29578864 [TBL] [Abstract][Full Text] [Related]
18. Dezocine attenuates the remifentanil-induced postoperative hyperalgesia by inhibition of phosphorylation of CaMKⅡα. Zhou J; Qi F; Hu Z; Zhang L; Li Z; Wang ZJ; Tang H; Chen Z Eur J Pharmacol; 2020 Feb; 869():172882. PubMed ID: 31863769 [TBL] [Abstract][Full Text] [Related]
19. Spinal mitochondrial-derived ROS contributes to remifentanil-induced postoperative hyperalgesia via modulating NMDA receptor in rats. Ye L; Xiao L; Bai X; Yang SY; Li Y; Chen Y; Cui Y; Chen Y Neurosci Lett; 2016 Nov; 634():79-86. PubMed ID: 27637388 [TBL] [Abstract][Full Text] [Related]
20. Spinal NLRP3 inflammasome activation mediates IL-1β release and contributes to remifentanil-induced postoperative hyperalgesia by regulating NMDA receptor NR1 subunit phosphorylation and GLT-1 expression in rats. Yuan Y; Zhao Y; Shen M; Wang C; Dong B; Xie K; Yu Y; Yu Y Mol Pain; 2022 Apr; 18():17448069221093016. PubMed ID: 35322721 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]