These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32014584)

  • 1. Constitutive description of skin dermis: Through analytical continuum and coarse-grained approaches for multi-scale understanding.
    Pissarenko A; Ruestes CJ; Meyers MA
    Acta Biomater; 2020 Apr; 106():208-224. PubMed ID: 32014584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural characterization and viscoelastic constitutive modeling of skin.
    Sherman VR; Tang Y; Zhao S; Yang W; Meyers MA
    Acta Biomater; 2017 Apr; 53():460-469. PubMed ID: 28219806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tensile behavior and structural characterization of pig dermis.
    Pissarenko A; Yang W; Quan H; Brown KA; Williams A; Proud WG; Meyers MA
    Acta Biomater; 2019 Mar; 86():77-95. PubMed ID: 30660003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils.
    Depalle B; Qin Z; Shefelbine SJ; Buehler MJ
    J Mech Behav Biomed Mater; 2015 Dec; 52():1-13. PubMed ID: 25153614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A coarse-grained molecular dynamics investigation of the role of mineral arrangement on the mechanical properties of mineralized collagen fibrils.
    Tavakol M; Vaughan TJ
    J R Soc Interface; 2023 Jan; 20(198):20220803. PubMed ID: 36695019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphomechanics of dermis-A method for non-destructive testing of collagenous tissues.
    Shah RG; Pierce MC; Silver FH
    Skin Res Technol; 2017 Aug; 23(3):399-406. PubMed ID: 27891678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A constitutive model for vascular tissue that integrates fibril, fiber and continuum levels with application to the isotropic and passive properties of the infrarenal aorta.
    Martufi G; Gasser TC
    J Biomech; 2011 Sep; 44(14):2544-50. PubMed ID: 21862020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collagen fiber interweaving is central to sclera stiffness.
    Wang B; Hua Y; Brazile BL; Yang B; Sigal IA
    Acta Biomater; 2020 Sep; 113():429-437. PubMed ID: 32585309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The different distribution of enzymatic collagen cross-links found in adult and children bone result in different mechanical behavior of collagen.
    Depalle B; Duarte AG; Fiedler IAK; Pujo-Menjouet L; Buehler MJ; Berteau JP
    Bone; 2018 May; 110():107-114. PubMed ID: 29414596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiscale Characterization of Type I Collagen Fibril Stress-Strain Behavior under Tensile Load: Analytical vs. MD Approaches.
    Gouissem A; Mbarki R; Al Khatib F; Adouni M
    Bioengineering (Basel); 2022 Apr; 9(5):. PubMed ID: 35621471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A structurally based stress-stretch relationship for tendon and ligament.
    Hurschler C; Loitz-Ramage B; Vanderby R
    J Biomech Eng; 1997 Nov; 119(4):392-9. PubMed ID: 9407276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viscoelasticity and preconditioning of rat skin under uniaxial stretch: microstructural constitutive characterization.
    Lokshin O; Lanir Y
    J Biomech Eng; 2009 Mar; 131(3):031009. PubMed ID: 19154068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fibril-based structural constitutive theory reveals the dominant role of network characteristics on the mechanical behavior of fibroblast-compacted collagen gels.
    Feng Z; Ishiguro Y; Fujita K; Kosawada T; Nakamura T; Sato D; Kitajima T; Umezu M
    Biomaterials; 2015 Oct; 67():365-81. PubMed ID: 26247391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the tear resistance of skin.
    Yang W; Sherman VR; Gludovatz B; Schaible E; Stewart P; Ritchie RO; Meyers MA
    Nat Commun; 2015 Mar; 6():6649. PubMed ID: 25812485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frequency dependent inelastic response of collagen architecture of pig dermis under cyclic tensile loading: An experimental study.
    Dwivedi KK; Lakhani P; Kumar S; Kumar N
    J Mech Behav Biomed Mater; 2020 Dec; 112():104030. PubMed ID: 32858398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deformation behavior and mechanical properties of amyloid protein nanowires.
    Solar M; Buehler MJ
    J Mech Behav Biomed Mater; 2013 Mar; 19():43-9. PubMed ID: 23290516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined multiphoton imaging and biaxial tissue extension for quantitative analysis of geometric fiber organization in human reticular dermis.
    Ueda M; Saito S; Murata T; Hirano T; Bise R; Kabashima K; Suzuki S
    Sci Rep; 2019 Jul; 9(1):10644. PubMed ID: 31337875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatigue of soft fibrous tissues: Multi-scale mechanics and constitutive modeling.
    Linka K; Hillgärtner M; Itskov M
    Acta Biomater; 2018 Apr; 71():398-410. PubMed ID: 29550441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical properties of a collagen fibril under simulated degradation.
    Malaspina DC; Szleifer I; Dhaher Y
    J Mech Behav Biomed Mater; 2017 Nov; 75():549-557. PubMed ID: 28850925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the effects of pH and tensile deformation on the small-deformation modulus of calf skin.
    Kronick PL
    Connect Tissue Res; 1988; 18(2):95-106. PubMed ID: 3203522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.