These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32014642)

  • 1. It's all about the fluxes: Temperature influences ion transport and toxicity in aquatic insects.
    Orr SE; Buchwalter DB
    Aquat Toxicol; 2020 Apr; 221():105405. PubMed ID: 32014642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfate transport kinetics and toxicity are modulated by sodium in aquatic insects.
    Scheibener S; Conley JM; Buchwalter D
    Aquat Toxicol; 2017 Sep; 190():62-69. PubMed ID: 28692867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative sodium transport patterns provide clues for understanding salinity and metal responses in aquatic insects.
    Scheibener SA; Richardi VS; Buchwalter DB
    Aquat Toxicol; 2016 Feb; 171():20-9. PubMed ID: 26730725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological plasticity and acclimatory responses to salinity stress are ion-specific in the mayfly, Neocloeon triangulifer.
    Orr SE; Negrão Watanabe TT; Buchwalter DB
    Environ Pollut; 2021 Oct; 286():117221. PubMed ID: 33975217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can't take the heat: Temperature-enhanced toxicity in the mayfly Isonychia bicolor exposed to the neonicotinoid insecticide imidacloprid.
    Camp AA; Buchwalter DB
    Aquat Toxicol; 2016 Sep; 178():49-57. PubMed ID: 27471044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxicological perspective on the osmoregulation and ionoregulation physiology of major ions by freshwater animals: Teleost fish, crustacea, aquatic insects, and Mollusca.
    Griffith MB
    Environ Toxicol Chem; 2017 Mar; 36(3):576-600. PubMed ID: 27808448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of dilution water ionic composition on acute major ion toxicity to the mayfly Neocloeon triangulifer.
    Soucek DJ; Mount DR; Dickinson A; Hockett JR
    Environ Toxicol Chem; 2018 May; 37(5):1330-1339. PubMed ID: 29297606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Salinity-induced ionoregulatory changes in the gill proteome of the mayfly, Neocloeon triangulifer.
    Orr SE; Collins LB; Jima DD; Buchwalter DB
    Environ Pollut; 2023 Jan; 316(Pt 2):120609. PubMed ID: 36368556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Are sulfate effects in the mayfly
    Buchwalter D; Scheibener S; Chou H; Soucek D; Elphick J
    Philos Trans R Soc Lond B Biol Sci; 2018 Dec; 374(1764):. PubMed ID: 30509915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why are mayflies (Ephemeroptera) lost following small increases in salinity? Three conceptual osmophysiological hypotheses.
    Kefford BJ
    Philos Trans R Soc Lond B Biol Sci; 2018 Dec; 374(1764):. PubMed ID: 30509920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of salt-contaminated freshwater on osmoregulation and tracheal gill function in nymphs of the mayfly Hexagenia rigida.
    Nowghani F; Chen CC; Jonusaite S; Watson-Leung T; Kelly SP; Donini A
    Aquat Toxicol; 2019 Jun; 211():92-104. PubMed ID: 30954848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Respirometry reveals major lineage-based differences in the energetics of osmoregulation in aquatic invertebrates.
    Cochran JK; Banks C; Buchwalter DB
    J Exp Biol; 2023 Oct; 226(20):. PubMed ID: 37767711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potash mining effluents and ion imbalances cause transient osmoregulatory stress, affect gill integrity and elevate chronically plasma sulfate levels in adult common roach, Rutilus rutilus.
    Baberschke N; Irob K; Preuer T; Meinelt T; Kloas W
    Environ Pollut; 2019 Jun; 249():181-190. PubMed ID: 30889501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The acclimatory response of the mayfly
    Cochran JK; Buchwalter DB
    Proc Biol Sci; 2022 Jul; 289(1979):20220529. PubMed ID: 35892216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium uptake in aquatic insects: influences of phylogeny and metals (Cd and Zn).
    Poteat MD; Buchwalter DB
    J Exp Biol; 2014 Apr; 217(Pt 7):1180-6. PubMed ID: 24311815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pesticidal copper (I) oxide: environmental fate and aquatic toxicity.
    Kiaune L; Singhasemanon N
    Rev Environ Contam Toxicol; 2011; 213():1-26. PubMed ID: 21541846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variation in Freshwater Insect Osmoregulatory Traits: A Comparative Approach.
    Cochran JK; Orr SE; Funk DH; Figurskey AC; Reiskind MH; Buchwalter DB
    Ecol Evol Physiol; 2024; 97(3):164-179. PubMed ID: 38875141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature affects acute mayfly responses to elevated salinity: implications for toxicity of road de-icing salts.
    Jackson JK; Funk DH
    Philos Trans R Soc Lond B Biol Sci; 2018 Dec; 374(1764):. PubMed ID: 30509923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute and Chronic Toxicity of Nickel and Zinc to a Laboratory Cultured Mayfly (Neocloeon triangulifer) in Aqueous but Fed Exposures.
    Soucek DJ; Dickinson A; Schlekat C; Van Genderen E; Hammer EJ
    Environ Toxicol Chem; 2020 May; 39(6):1196-1206. PubMed ID: 32043286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of the pharmaceutical carbamazepine on life history characteristics of flat-headed mayflies (Heptageniidae) and aquatic resource interactions.
    Jarvis AL; Bernot MJ; Bernot RJ
    Ecotoxicology; 2014 Nov; 23(9):1701-12. PubMed ID: 25130701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.