These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 32014677)

  • 1. Robust porous organosilica monoliths via a surfactant-free high internal phase emulsion process for efficient oil-water separation.
    Tu S; Chen M; Wu L
    J Colloid Interface Sci; 2020 Apr; 566():338-346. PubMed ID: 32014677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water-in-oil Pickering emulsions stabilized by stearoylated microcrystalline cellulose.
    Pang B; Liu H; Liu P; Peng X; Zhang K
    J Colloid Interface Sci; 2018 Mar; 513():629-637. PubMed ID: 29207345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Convenient and Versatile Strategy for the Functionalization of Silica Foams Using High Internal Phase Emulsion Templates as Microreactors.
    Yu H; Wang Q; Zhao Y; Wang H
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):14607-14619. PubMed ID: 32150371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH-Sensitive W/O Pickering High Internal Phase Emulsions and W/O/W High Internal Water-Phase Double Emulsions with Tailored Microstructures Costabilized by Lecithin and Silica Inorganic Particles.
    Guan X; Ngai T
    Langmuir; 2021 Mar; 37(8):2843-2854. PubMed ID: 33595319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High internal phase emulsions: catastrophic phase inversion, stability, and triggered destabilization.
    Dunstan TS; Fletcher PD; Mashinchi S
    Langmuir; 2012 Jan; 28(1):339-49. PubMed ID: 22128917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macroporous monoliths with pH-induced switchable wettability for recyclable oil separation and recovery.
    Guo Z; Gu H; Chen Q; He Z; Xu W; Zhang J; Liu Y; Xiong L; Zheng L; Feng Y
    J Colloid Interface Sci; 2019 Jan; 534():183-194. PubMed ID: 30223199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultralight Silica Foams with a Hierarchical Pore Structure via a Surfactant-Free High Internal Phase Emulsion Process.
    Tu S; Zhao Y; Tan H; Yu H; Zhu X; Wang H
    Langmuir; 2018 Sep; 34(35):10381-10388. PubMed ID: 30088939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methyl Methacrylate HIPE Solely Stabilized by Fluorinated Di-block Copolymer for Fabrication of Highly Porous and Interconnected Polymer Monoliths.
    Azhar U; Zong C; Wan X; Xu A; Yabin Z; Liu J; Zhang S; Geng B
    Chemistry; 2018 Aug; 24(45):11619-11626. PubMed ID: 30003616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-pot facile synthesis of PDMS/PDMAEMA hybrid sponges for surfactant stabilized O/W emulsion separation.
    Liu H; Sun Y; Chen Z
    Soft Matter; 2021 Oct; 17(41):9363-9370. PubMed ID: 34605529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel Polymeric Organosilica Precursor and Emulsion Stabilizer: Toward Highly Elastic Hollow Organosilica Nanospheres.
    Yin Q; Tu S; Chen M; Wu L
    Langmuir; 2019 Sep; 35(35):11524-11532. PubMed ID: 31398975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanofibrous, Emulsion-Templated Syndiotactic Polystyrenes with Superhydrophobicity for Oil Spill Cleanup.
    Gui H; Zhang T; Guo Q
    ACS Appl Mater Interfaces; 2019 Oct; 11(39):36063-36072. PubMed ID: 31549499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-Step Synthesis of Hydrophobic Multicompartment Organosilica Microspheres with Highly Interconnected Macro-mesopores for the Stabilization of Liquid Marbles with Excellent Catalysis.
    Du G; Peng J; Zhang Y; Zhang H; Lü J; Fang Y
    Langmuir; 2017 May; 33(21):5223-5235. PubMed ID: 28489386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple emulsions as soft templates for the synthesis of multifunctional silicone porous particles.
    Vilanova N; Kolen'ko YV; Solans C; Rodríguez-Abreu C
    J Colloid Interface Sci; 2015 Jan; 437():235-243. PubMed ID: 25313489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrastable Water-in-Oil High Internal Phase Emulsions Featuring Interfacial and Biphasic Network Stabilization.
    Lee MC; Tan C; Ravanfar R; Abbaspourrad A
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):26433-26441. PubMed ID: 31245993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inclusion of Phase-Change Materials in Submicron Silica Capsules Using a Surfactant-Free Emulsion Approach.
    Chen Z; Zhao Y; Zhao Y; Thomas H; Zhu X; Möller M
    Langmuir; 2018 Sep; 34(35):10397-10406. PubMed ID: 30095272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of Macroporous Polymers from Microcapsule-Stabilized Pickering High Internal Phase Emulsions.
    Zhu H; Zhang M; Zhang S
    Langmuir; 2019 Jul; 35(29):9504-9512. PubMed ID: 31256592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macroporous graphene oxide-polymer composite prepared through pickering high internal phase emulsions.
    Zheng Z; Zheng X; Wang H; Du Q
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7974-82. PubMed ID: 23865672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amphiphilic Polyphosphazene for Fluorocarbon Emulsion Stabilization.
    Wang Y; Liu W; Zang Z; Luo Y; Sun S; Zhang S; Russell TP; Shi S; Wu Z
    Small; 2024 Apr; ():e2312275. PubMed ID: 38573924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A porous carbon absorbent based on high internal phase emulsion for separation and enrichment of trifluralin from soil.
    Yuan H; Ruan G; Chen Z; Zhang W; Jiang X; Du F
    Mikrochim Acta; 2020 Jan; 187(2):138. PubMed ID: 31953636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interconnected Porous Monolith Prepared via UiO-66 Stabilized Pickering High Internal Phase Emulsion Template.
    Wang J; Zhu H; Li BG; Zhu S
    Chemistry; 2018 Nov; 24(61):16426-16431. PubMed ID: 30125409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.