BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 32014770)

  • 1. Lignocellulosic crop residue composting by cellulolytic nitrogen-fixing bacteria: A novel tool for environmental sustainability.
    Harindintwali JD; Zhou J; Yu X
    Sci Total Environ; 2020 May; 715():136912. PubMed ID: 32014770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated eco-strategies towards sustainable carbon and nitrogen cycling in agriculture.
    Harindintwali JD; Zhou J; Muhoza B; Wang F; Herzberger A; Yu X
    J Environ Manage; 2021 Sep; 293():112856. PubMed ID: 34051535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: A review under the perspective of a circular economy.
    De Corato U
    Sci Total Environ; 2020 Oct; 738():139840. PubMed ID: 32531600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhizosphere Microbiome Modulators: Contributions of Nitrogen Fixing Bacteria towards Sustainable Agriculture.
    Igiehon NO; Babalola OO
    Int J Environ Res Public Health; 2018 Mar; 15(4):. PubMed ID: 29570619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic of functional microbial groups during mesophilic composting of agro-industrial wastes and free-living (N2)-fixing bacteria application.
    Pepe O; Ventorino V; Blaiotta G
    Waste Manag; 2013 Jul; 33(7):1616-25. PubMed ID: 23647951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison between aerobic and anaerobic co-composting of agricultural residues.
    El Sebaie OD; Hussin AH; Shalaby EE; Mohamed MG; Lbrahem MT
    J Egypt Public Health Assoc; 2000; 75(1-2):131-52. PubMed ID: 17219853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Agricultural waste management strategies for environmental sustainability.
    Koul B; Yakoob M; Shah MP
    Environ Res; 2022 Apr; 206():112285. PubMed ID: 34710442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compost supplementation with nutrients and microorganisms in composting process.
    Sánchez ÓJ; Ospina DA; Montoya S
    Waste Manag; 2017 Nov; 69():136-153. PubMed ID: 28823698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying nutrient recovery efficiency and loss from compost-based urban agriculture.
    Shrestha P; Small GE; Kay A
    PLoS One; 2020; 15(4):e0230996. PubMed ID: 32243461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alkyl polyglycoside and earthworm (Eisenia fetida) enhance biodegradation of green waste and its use for growing vegetables.
    Gong X; Li S; Chang SX; Wu Q; Cai L; Sun X
    Ecotoxicol Environ Saf; 2019 Jan; 167():459-466. PubMed ID: 30368139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of microbial inoculants on co-composting of lignocellulosic crop residues with farm animal manure: A review.
    Greff B; Szigeti J; Nagy Á; Lakatos E; Varga L
    J Environ Manage; 2022 Jan; 302(Pt B):114088. PubMed ID: 34798585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential of lignocellulose degrading microorganisms for agricultural residue decomposition in soil: A review.
    Shinde R; Shahi DK; Mahapatra P; Naik SK; Thombare N; Singh AK
    J Environ Manage; 2022 Oct; 320():115843. PubMed ID: 36056484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lignocellulosic biomass fertilizers: Production, characterization, and agri-applications.
    Izydorczyk G; Skrzypczak D; Mironiuk M; Mikula K; Samoraj M; Gil F; Taf R; Moustakas K; Chojnacka K
    Sci Total Environ; 2024 May; 923():171343. PubMed ID: 38438048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of turning frequency on co-composting pig manure and fungus residue.
    Jiang-Ming Z
    J Air Waste Manag Assoc; 2017 Mar; 67(3):313-321. PubMed ID: 27650130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Additive facilitated co-composting of lignocellulosic biomass waste, approach towards minimizing greenhouse gas emissions: An up to date review.
    Ansari SA; Shakeel A; Sawarkar R; Maddalwar S; Khan D; Singh L
    Environ Res; 2023 May; 224():115529. PubMed ID: 36822534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetobacter orientalis XJC-C with a high lignocellulosic biomass-degrading ability improves significantly composting efficiency of banana residues by increasing metabolic activity and functional diversity of bacterial community.
    Chen Y; Wang W; Zhou D; Cai B; Zhang M; Qi D; Jing T; Zang X; Zhang L; Xie J
    Bioresour Technol; 2021 Mar; 324():124661. PubMed ID: 33440312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wheat straw: An inefficient substrate for rapid natural lignocellulosic composting.
    Zhang L; Jia Y; Zhang X; Feng X; Wu J; Wang L; Chen G
    Bioresour Technol; 2016 Jun; 209():402-6. PubMed ID: 26980627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chestnut green waste composting for sustainable forest management: Microbiota dynamics and impact on plant disease control.
    Ventorino V; Parillo R; Testa A; Viscardi S; Espresso F; Pepe O
    J Environ Manage; 2016 Jan; 166():168-77. PubMed ID: 26496847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential of indigenous ligno-cellulolytic microbial consortium to accelerate degradation of heterogenous crop residues.
    Sharma S; Kumawat KC; Kaur S
    Environ Sci Pollut Res Int; 2022 Dec; 29(58):88331-88346. PubMed ID: 35834084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Straw Composts with Composite Inoculants and Their Effects on Soil Carbon and Nitrogen Contents and Enzyme Activity].
    Nie WH; Qi ZP; Feng HW; Sun YJ; Zhi YE; Zhang JZ; Zhang D
    Huan Jing Ke Xue; 2017 Feb; 38(2):783-791. PubMed ID: 29964538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.