These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 32015527)

  • 1. Identification of cancer driver genes based on nucleotide context.
    Dietlein F; Weghorn D; Taylor-Weiner A; Richters A; Reardon B; Liu D; Lander ES; Van Allen EM; Sunyaev SR
    Nat Genet; 2020 Feb; 52(2):208-218. PubMed ID: 32015527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of signals of positive and negative selection to distinguish cancer genes and passenger genes.
    Bányai L; Trexler M; Kerekes K; Csuka O; Patthy L
    Elife; 2021 Jan; 10():. PubMed ID: 33427197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Domain landscapes of somatic mutations in cancer.
    Nehrt NL; Peterson TA; Park D; Kann MG
    BMC Genomics; 2012 Jun; 13 Suppl 4(Suppl 4):S9. PubMed ID: 22759657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of new driver and passenger mutations within APOBEC-induced hotspot mutations in bladder cancer.
    Shi MJ; Meng XY; Fontugne J; Chen CL; Radvanyi F; Bernard-Pierrot I
    Genome Med; 2020 Sep; 12(1):85. PubMed ID: 32988402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De novo discovery of mutated driver pathways in cancer.
    Vandin F; Upfal E; Raphael BJ
    Genome Res; 2012 Feb; 22(2):375-85. PubMed ID: 21653252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying driver mutations from sequencing data of heterogeneous tumors in the era of personalized genome sequencing.
    Zhang J; Liu J; Sun J; Chen C; Foltz G; Lin B
    Brief Bioinform; 2014 Mar; 15(2):244-55. PubMed ID: 23818492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DrGaP: a powerful tool for identifying driver genes and pathways in cancer sequencing studies.
    Hua X; Xu H; Yang Y; Zhu J; Liu P; Lu Y
    Am J Hum Genet; 2013 Sep; 93(3):439-51. PubMed ID: 23954162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QuaDMutNetEx: a method for detecting cancer driver genes with low mutation frequency.
    Bokhari Y; Alhareeri A; Arodz T
    BMC Bioinformatics; 2020 Mar; 21(1):122. PubMed ID: 32293263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Passenger mutations accurately classify human tumors.
    Salvadores M; Mas-Ponte D; Supek F
    PLoS Comput Biol; 2019 Apr; 15(4):e1006953. PubMed ID: 30986244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pan-cancer analysis of somatic mutations in miRNA genes.
    Urbanek-Trzeciak MO; Galka-Marciniak P; Nawrocka PM; Kowal E; Szwec S; Giefing M; Kozlowski P
    EBioMedicine; 2020 Nov; 61():103051. PubMed ID: 33038763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A spatial simulation approach to account for protein structure when identifying non-random somatic mutations.
    Ryslik GA; Cheng Y; Cheung KH; Bjornson RD; Zelterman D; Modis Y; Zhao H
    BMC Bioinformatics; 2014 Jul; 15():231. PubMed ID: 24990767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of 7,815 cancer exomes reveals associations between mutational processes and somatic driver mutations.
    Poulos RC; Wong YT; Ryan R; Pang H; Wong JWH
    PLoS Genet; 2018 Nov; 14(11):e1007779. PubMed ID: 30412573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of constrained cancer driver genes based on mutation timing.
    Sakoparnig T; Fried P; Beerenwinkel N
    PLoS Comput Biol; 2015 Jan; 11(1):e1004027. PubMed ID: 25569148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying Driver Interfaces Enriched for Somatic Missense Mutations in Tumors.
    Ozturk K; Carter H
    Methods Mol Biol; 2019; 1907():51-72. PubMed ID: 30542990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. OncoVar: an integrated database and analysis platform for oncogenic driver variants in cancers.
    Wang T; Ruan S; Zhao X; Shi X; Teng H; Zhong J; You M; Xia K; Sun Z; Mao F
    Nucleic Acids Res; 2021 Jan; 49(D1):D1289-D1301. PubMed ID: 33179738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ontology-based prediction of cancer driver genes.
    Althubaiti S; Karwath A; Dallol A; Noor A; Alkhayyat SS; Alwassia R; Mineta K; Gojobori T; Beggs AD; Schofield PN; Gkoutos GV; Hoehndorf R
    Sci Rep; 2019 Nov; 9(1):17405. PubMed ID: 31757986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA replication timing and selection shape the landscape of nucleotide variation in cancer genomes.
    Woo YH; Li WH
    Nat Commun; 2012; 3():1004. PubMed ID: 22893128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using passenger mutations to estimate the timing of driver mutations and identify mutator alterations.
    Youn A; Simon R
    BMC Bioinformatics; 2013 Dec; 14():363. PubMed ID: 24330428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes.
    Fujimoto A; Okada Y; Boroevich KA; Tsunoda T; Taniguchi H; Nakagawa H
    Sci Rep; 2016 May; 6():26483. PubMed ID: 27225414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A greedy approach for mutual exclusivity analysis in cancer study.
    Fang H; Zhang Z; Zhou Y; Jin L; Yang Y
    Biostatistics; 2022 Jul; 23(3):910-925. PubMed ID: 33634822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.