BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 32015688)

  • 1. Empagliflozin Attenuates Hyperuricemia by Upregulation of ABCG2 via AMPK/AKT/CREB Signaling Pathway in Type 2 Diabetic Mice.
    Lu YH; Chang YP; Li T; Han F; Li CJ; Li XY; Xue M; Cheng Y; Meng ZY; Han Z; Sun B; Chen LM
    Int J Biol Sci; 2020; 16(3):529-542. PubMed ID: 32015688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The SGLT2 inhibitor empagliflozin negatively regulates IL-17/IL-23 axis-mediated inflammatory responses in T2DM with NAFLD via the AMPK/mTOR/autophagy pathway.
    Meng Z; Liu X; Li T; Fang T; Cheng Y; Han L; Sun B; Chen L
    Int Immunopharmacol; 2021 May; 94():107492. PubMed ID: 33647823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Berberrubine attenuates potassium oxonate- and hypoxanthine-induced hyperuricemia by regulating urate transporters and JAK2/STAT3 signaling pathway.
    Lin G; Yu Q; Xu L; Huang Z; Mai L; Jiang L; Su Z; Xie J; Li Y; Liu Y; Lin Z; Chen J
    Eur J Pharmacol; 2021 Dec; 912():174592. PubMed ID: 34699754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Empagliflozin improves diabetic renal tubular injury by alleviating mitochondrial fission via AMPK/SP1/PGAM5 pathway.
    Liu X; Xu C; Xu L; Li X; Sun H; Xue M; Li T; Yu X; Sun B; Chen L
    Metabolism; 2020 Oct; 111():154334. PubMed ID: 32777444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart.
    Li C; Zhang J; Xue M; Li X; Han F; Liu X; Xu L; Lu Y; Cheng Y; Li T; Yu X; Sun B; Chen L
    Cardiovasc Diabetol; 2019 Feb; 18(1):15. PubMed ID: 30710997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antidiabetic Effect of Taxifolin in Cultured L6 Myotubes and Type 2 Diabetic Model KK-A
    Kondo S; Adachi SI; Yoshizawa F; Yagasaki K
    Curr Issues Mol Biol; 2021 Sep; 43(3):1293-1306. PubMed ID: 34698101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperuricemia contributes to glucose intolerance of hepatic inflammatory macrophages and impairs the insulin signaling pathway
    Zhao H; Lu J; He F; Wang M; Yan Y; Chen B; Xie D; Xu C; Wang Q; Liu W; Yu W; Xi Y; Yu L; Yamamoto T; Koyama H; Wang W; Zhang C; Cheng J
    Front Immunol; 2022; 13():931087. PubMed ID: 36177037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid level: A meta-analysis of randomized controlled trials.
    Zhao Y; Xu L; Tian D; Xia P; Zheng H; Wang L; Chen L
    Diabetes Obes Metab; 2018 Feb; 20(2):458-462. PubMed ID: 28846182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soluble uric acid increases PDZK1 and ABCG2 expression in human intestinal cell lines via the TLR4-NLRP3 inflammasome and PI3K/Akt signaling pathway.
    Chen M; Lu X; Lu C; Shen N; Jiang Y; Chen M; Wu H
    Arthritis Res Ther; 2018 Feb; 20(1):20. PubMed ID: 29415757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Empagliflozin protects heart from inflammation and energy depletion via AMPK activation.
    Koyani CN; Plastira I; Sourij H; Hallström S; Schmidt A; Rainer PP; Bugger H; Frank S; Malle E; von Lewinski D
    Pharmacol Res; 2020 Aug; 158():104870. PubMed ID: 32434052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hereditary hemochromatosis disrupts uric acid homeostasis and causes hyperuricemia via altered expression/activity of xanthine oxidase and ABCG2.
    Ristic B; Sivaprakasam S; Narayanan M; Ganapathy V
    Biochem J; 2020 Apr; 477(8):1499-1513. PubMed ID: 32239172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Naringenin Ameliorates Hyperuricemia by Regulating Renal Uric Acid Excretion via the PI3K/AKT Signaling Pathway and Renal Inflammation through the NF-κB Signaling Pathway.
    Yang B; Xin M; Liang S; Huang Y; Li J; Wang C; Liu C; Song X; Sun J; Sun W
    J Agric Food Chem; 2023 Jan; 71(3):1434-1446. PubMed ID: 36525382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dendrobium officinalis six nostrum ameliorates urate under-excretion and protects renal dysfunction in lipid emulsion-induced hyperuricemic rats.
    Chen X; Ge HZ; Lei SS; Jiang ZT; Su J; He X; Zheng X; Wang HY; Yu QX; Li B; Lv GY; Chen SH
    Biomed Pharmacother; 2020 Dec; 132():110765. PubMed ID: 33120237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insulin stimulates uric acid reabsorption via regulating urate transporter 1 and ATP-binding cassette subfamily G member 2.
    Toyoki D; Shibata S; Kuribayashi-Okuma E; Xu N; Ishizawa K; Hosoyamada M; Uchida S
    Am J Physiol Renal Physiol; 2017 Sep; 313(3):F826-F834. PubMed ID: 28679589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Empagliflozin attenuates diabetic tubulopathy by improving mitochondrial fragmentation and autophagy.
    Lee YH; Kim SH; Kang JM; Heo JH; Kim DJ; Park SH; Sung M; Kim J; Oh J; Yang DH; Lee SH; Lee SY
    Am J Physiol Renal Physiol; 2019 Oct; 317(4):F767-F780. PubMed ID: 31390268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Xanthoceras sorbifolium leaves alleviate hyperuricemic nephropathy by inhibiting the PI3K/AKT signaling pathway to regulate uric acid transport.
    Liu Y; Han Y; Liu Y; Huang C; Feng W; Cui H; Li M
    J Ethnopharmacol; 2024 Jun; 327():117946. PubMed ID: 38447615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diosmetin Maintains Barrier Integrity by Reducing the Expression of ABCG2 in Colonic Epithelial Cells.
    Liu J; Fu L; Yin F; Yin L; Song X; Guo H; Liu J
    J Agric Food Chem; 2023 Jun; 71(23):8931-8940. PubMed ID: 37269551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antidiabetic activity of perylenequinonoid-rich extract from Shiraia bambusicola in KK-Ay mice with spontaneous type 2 diabetes mellitus.
    Huang M; Zhao P; Xiong M; Zhou Q; Zheng S; Ma X; Xu C; Yang J; Yang X; Zhang TC
    J Ethnopharmacol; 2016 Sep; 191():71-81. PubMed ID: 27286915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of Sodium-Glucose Cotransporter-2 during Serum Deprivation Increases Hepatic Gluconeogenesis via the AMPK/AKT/FOXO Signaling Pathway.
    Lee J; Hong SW; Kim MJ; Lim YM; Moon SJ; Kwon H; Park SE; Rhee EJ; Lee WY
    Endocrinol Metab (Seoul); 2024 Feb; 39(1):98-108. PubMed ID: 38171209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ABCG2 expression and uric acid metabolism of the intestine in hyperuricemia model rat.
    Morimoto C; Tamura Y; Asakawa S; Kuribayashi-Okuma E; Nemoto Y; Li J; Murase T; Nakamura T; Hosoyamada M; Uchida S; Shibata S
    Nucleosides Nucleotides Nucleic Acids; 2020; 39(5):744-759. PubMed ID: 31983315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.