These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 32015815)

  • 1. Internal acidity scale and reactivity evaluation of chiral phosphoric acids with different 3,3'-substituents in Brønsted acid catalysis.
    Rothermel K; Melikian M; Hioe J; Greindl J; Gramüller J; Žabka M; Sorgenfrei N; Hausler T; Morana F; Gschwind RM
    Chem Sci; 2019 Nov; 10(43):10025-10034. PubMed ID: 32015815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bidentate substrate binding in Brønsted acid catalysis: structural space, hydrogen bonding and dimerization.
    Gramüller J; Dullinger P; Horinek D; Gschwind RM
    Chem Sci; 2022 Dec; 13(48):14366-14372. PubMed ID: 36545144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disulfonimides versus Phosphoric Acids in Brønsted Acid Catalysis: The Effect of Weak Hydrogen Bonds and Multiple Acceptors on Complex Structures and Reactivity.
    Rothermel K; Žabka M; Hioe J; Gschwind RM
    J Org Chem; 2019 Nov; 84(21):13221-13231. PubMed ID: 31550152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relaxation Dispersion NMR to Reveal Fast Dynamics in Brønsted Acid Catalysis: Influence of Sterics and H-Bond Strength on Conformations and Substrate Hopping.
    Lokesh N; Hioe J; Gramüller J; Gschwind RM
    J Am Chem Soc; 2019 Oct; 141(41):16398-16407. PubMed ID: 31545037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly acidic
    Hecht M; Dullinger P; Silva W; Horinek D; Gschwind RM
    Chem Sci; 2024 Jun; 15(24):9104-9111. PubMed ID: 38903236
    [No Abstract]   [Full Text] [Related]  

  • 6. On the acidity and reactivity of highly effective chiral Brønsted acid catalysts: establishment of an acidity scale.
    Kaupmees K; Tolstoluzhsky N; Raja S; Rueping M; Leito I
    Angew Chem Int Ed Engl; 2013 Oct; 52(44):11569-72. PubMed ID: 24039083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ternary complexes of chiral disulfonimides in transfer-hydrogenation of imines: the relevance of late intermediates in ion pair catalysis.
    Žabka M; Gschwind RM
    Chem Sci; 2021 Dec; 12(46):15263-15272. PubMed ID: 34976346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brønsted acid catalysis - the effect of 3,3'-substituents on the structural space and the stabilization of imine/phosphoric acid complexes.
    Melikian M; Gramüller J; Hioe J; Greindl J; Gschwind RM
    Chem Sci; 2019 May; 10(20):5226-5234. PubMed ID: 31191877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooperative catalysis: combining an achiral metal catalyst with a chiral Brønsted acid enables highly enantioselective hydrogenation of imines.
    Tang W; Johnston S; Li C; Iggo JA; Bacsa J; Xiao J
    Chemistry; 2013 Oct; 19(42):14187-93. PubMed ID: 24019056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brønsted Acid Catalysis-Controlling the Competition between Monomeric versus Dimeric Reaction Pathways Enhances Stereoselectivities.
    Franta M; Gramüller J; Dullinger P; Kaltenberger S; Horinek D; Gschwind RM
    Angew Chem Int Ed Engl; 2023 Jul; 62(27):e202301183. PubMed ID: 36994733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chiral Phosphoric Acids in Metal-Organic Frameworks with Enhanced Acidity and Tunable Catalytic Selectivity.
    Chen X; Jiang H; Li X; Hou B; Gong W; Wu X; Han X; Zheng F; Liu Y; Jiang J; Cui Y
    Angew Chem Int Ed Engl; 2019 Oct; 58(41):14748-14757. PubMed ID: 31389142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric Brønsted acid catalysis with chiral carboxylic acids.
    Min C; Seidel D
    Chem Soc Rev; 2017 Oct; 46(19):5889-5902. PubMed ID: 28730207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brønsted Acid Catalysis-Structural Preferences and Mobility in Imine/Phosphoric Acid Complexes.
    Greindl J; Hioe J; Sorgenfrei N; Morana F; Gschwind RM
    J Am Chem Soc; 2016 Dec; 138(49):15965-15971. PubMed ID: 27960345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acidity characterization of heterogeneous catalysts by solid-state NMR spectroscopy using probe molecules.
    Zheng A; Liu SB; Deng F
    Solid State Nucl Magn Reson; 2013; 55-56():12-27. PubMed ID: 24094848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acid-Base Catalysis in Glycosidations: A Nature Derived Alternative to the Generally Employed Methodology.
    Peng P; Schmidt RR
    Acc Chem Res; 2017 May; 50(5):1171-1183. PubMed ID: 28440624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benzothiazoline: versatile hydrogen donor for organocatalytic transfer hydrogenation.
    Zhu C; Saito K; Yamanaka M; Akiyama T
    Acc Chem Res; 2015 Feb; 48(2):388-98. PubMed ID: 25611073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembly of P-chiral supramolecular phosphines on rhodium and direct evidence for Rh-catalyst-substrate interactions.
    Koshti VS; Sen A; Shinde D; Chikkali SH
    Dalton Trans; 2017 Oct; 46(40):13966-13973. PubMed ID: 28972617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical study on the acidities of chiral phosphoric acids in dimethyl sulfoxide: hints for organocatalysis.
    Yang C; Xue XS; Jin JL; Li X; Cheng JP
    J Org Chem; 2013 Jul; 78(14):7076-85. PubMed ID: 23795668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphothreonine (pThr)-Based Multifunctional Peptide Catalysis for Asymmetric Baeyer-Villiger Oxidations of Cyclobutanones.
    Featherston AL; Shugrue CR; Mercado BQ; Miller SJ
    ACS Catal; 2019 Jan; 9(1):242-252. PubMed ID: 31007966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploiting metal-ligand bifunctional reactions in the design of iron asymmetric hydrogenation catalysts.
    Morris RH
    Acc Chem Res; 2015 May; 48(5):1494-502. PubMed ID: 25897779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.