These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 32015859)

  • 1. Do different rates of gene flow underlie variation in phenotypic and phenological clines in a montane grasshopper community?
    Slatyer RA; Schoville SD; Nufio CR; Buckley LB
    Ecol Evol; 2020 Jan; 10(2):980-997. PubMed ID: 32015859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of environment and core-margin effects on range-wide phenotypic variation in a montane grasshopper.
    Noguerales V; García-Navas V; Cordero PJ; Ortego J
    J Evol Biol; 2016 Nov; 29(11):2129-2142. PubMed ID: 27271999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interannual variation in season length is linked to strong co-gradient plasticity of phenology in a montane annual plant.
    Ensing DJ; Eckert CG
    New Phytol; 2019 Nov; 224(3):1184-1200. PubMed ID: 31225910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasticity in functional traits in the context of climate change: a case study of the subalpine forb Boechera stricta (Brassicaceae).
    Anderson JT; Gezon ZJ
    Glob Chang Biol; 2015 Apr; 21(4):1689-703. PubMed ID: 25470363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How do phenology, plasticity, and evolution determine the fitness consequences of climate change for montane butterflies?
    Kingsolver JG; Buckley LB
    Evol Appl; 2018 Sep; 11(8):1231-1244. PubMed ID: 30151036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grasshopper community response to climatic change: variation along an elevational gradient.
    Nufio CR; McGuire CR; Bowers MD; Guralnick RP
    PLoS One; 2010 Sep; 5(9):e12977. PubMed ID: 20886093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant population differentiation and climate change: responses of grassland species along an elevational gradient.
    Frei ER; Ghazoul J; Matter P; Heggli M; Pluess AR
    Glob Chang Biol; 2014 Feb; 20(2):441-55. PubMed ID: 24115364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local adaptation to an altitudinal gradient: the interplay between mean phenotypic trait variation and phenotypic plasticity in
    Syrotchen JM; Ferris KG
    bioRxiv; 2024 Jan; ():. PubMed ID: 37577559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of genetic drift during Pleistocene divergence as revealed by analyses of genomic variation.
    Knowles LL; Richards CL
    Mol Ecol; 2005 Nov; 14(13):4023-32. PubMed ID: 16262856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microgeographic adaptation and the effect of pollen flow on the adaptive potential of a temperate tree species.
    Gauzere J; Klein EK; Brendel O; Davi H; Oddou-Muratorio S
    New Phytol; 2020 Jul; 227(2):641-653. PubMed ID: 32167572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonrandom larval dispersal can steepen marine clines.
    Hare MP; Guenther C; Fagan WF
    Evolution; 2005 Dec; 59(12):2509-17. PubMed ID: 16526499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenotypic differentiation and diversifying selection in populations of Eruca sativa along an aridity gradient.
    Bajpai PK; Weiss H; Dvir G; Hanin N; Wasserstrom H; Barazani O
    BMC Ecol Evol; 2022 Mar; 22(1):40. PubMed ID: 35354367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic selection for early reproductive phenology in an annual plant across a steep, elevational gradient of growing season length.
    Ensing DJ; Sora DMDH; Eckert CG
    Evolution; 2021 Jul; 75(7):1681-1698. PubMed ID: 34048598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenotypic divergence of the common toad (Bufo bufo) along an altitudinal gradient: evidence for local adaptation.
    Luquet E; Léna JP; Miaud C; Plénet S
    Heredity (Edinb); 2015 Jan; 114(1):69-79. PubMed ID: 25074572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic diversity and gene flow decline with elevation in montane mayflies.
    Polato NR; Gray MM; Gill BA; Becker CG; Casner KL; Flecker AS; Kondratieff BC; Encalada AC; Poff NL; Funk WC; Zamudio KR
    Heredity (Edinb); 2017 Aug; 119(2):107-116. PubMed ID: 28489073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plastic responses to elevated temperature in low and high elevation populations of three grassland species.
    Frei ER; Ghazoul J; Pluess AR
    PLoS One; 2014; 9(6):e98677. PubMed ID: 24901500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pervasive Genomic Signatures of Local Adaptation to Altitude Across Highland Specialist Andean Hummingbird Populations.
    Lim MCW; Bi K; Witt CC; Graham CH; Dávalos LM
    J Hered; 2021 May; 112(3):229-240. PubMed ID: 33631009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating patterns of thermal tolerance and phenotypic plasticity with population genetics to improve understanding of vulnerability to warming in a widespread copepod.
    Sasaki MC; Dam HG
    Glob Chang Biol; 2019 Dec; 25(12):4147-4164. PubMed ID: 31449341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenology and plasticity can prevent adaptive clines in thermal tolerance across temperate mountains: The importance of the elevation-time axis.
    Gutiérrez-Pesquera LM; Tejedo M; Camacho A; Enriquez-Urzelai U; Katzenberger M; Choda M; Pintanel P; Nicieza AG
    Ecol Evol; 2022 Oct; 12(10):e9349. PubMed ID: 36225839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. To remain or leave: Dispersal variation and its genetic consequences in benthic freshwater invertebrates.
    Ruggeri P; Pasternak E; Okamura B
    Ecol Evol; 2019 Nov; 9(21):12069-12088. PubMed ID: 31832145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.