These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 32016447)

  • 1. A six‑gene support vector machine classifier contributes to the diagnosis of pediatric septic shock.
    Long G; Yang C
    Mol Med Rep; 2020 Mar; 21(3):1561-1571. PubMed ID: 32016447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 21‑gene Support Vector Machine classifier and a 10‑gene risk score system constructed for patients with gastric cancer.
    Jiang H; Gu J; Du J; Qi X; Qian C; Fei B
    Mol Med Rep; 2020 Jan; 21(1):347-359. PubMed ID: 31939629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Six potential biomarkers in septic shock: a deep bioinformatics and prospective observational study.
    Kong C; Zhu Y; Xie X; Wu J; Qian M
    Front Immunol; 2023; 14():1184700. PubMed ID: 37359526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feature genes in metastatic breast cancer identified by MetaDE and SVM classifier methods.
    Tuo Y; An N; Zhang M
    Mol Med Rep; 2018 Mar; 17(3):4281-4290. PubMed ID: 29328377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coronary artery disease associated specific modules and feature genes revealed by integrative methods of WGCNA, MetaDE and machine learning.
    Wang Y; Liu T; Liu Y; Chen J; Xin B; Wu M; Cui W
    Gene; 2019 Aug; 710():122-130. PubMed ID: 31075415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of a 26‑feature gene support vector machine classifier for smoking and non‑smoking lung adenocarcinoma sample classification.
    Yang L; Sun L; Wang W; Xu H; Li Y; Zhao JY; Liu DZ; Wang F; Zhang LY
    Mol Med Rep; 2018 Feb; 17(2):3005-3013. PubMed ID: 29257283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A random forest classifier predicts recurrence risk in patients with ovarian cancer.
    Cheng L; Li L; Wang L; Li X; Xing H; Zhou J
    Mol Med Rep; 2018 Sep; 18(3):3289-3297. PubMed ID: 30066910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinformatics Analysis of Gene Expression Profiles for Risk Prediction in Patients with Septic Shock.
    Hu Y; Cheng L; Zhong W; Chen M; Zhang Q
    Med Sci Monit; 2019 Dec; 25():9563-9571. PubMed ID: 31838482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long Noncoding RNA THAP9-AS1 and TSPOAP1-AS1 Provide Potential Diagnostic Signatures for Pediatric Septic Shock.
    Wu Y; Yin Q; Zhang X; Zhu P; Luan H; Chen Y
    Biomed Res Int; 2020; 2020():7170464. PubMed ID: 33344646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishment of a SVM classifier to predict recurrence of ovarian cancer.
    Zhou J; Li L; Wang L; Li X; Xing H; Cheng L
    Mol Med Rep; 2018 Oct; 18(4):3589-3598. PubMed ID: 30106117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening of characteristic genes in ulcerative colitis by integrating gene expression profiles.
    Han Y; Liu X; Dong H; Wen D
    BMC Gastroenterol; 2021 Oct; 21(1):415. PubMed ID: 34717557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A support vector machine classifier for the prediction of osteosarcoma metastasis with high accuracy.
    He Y; Ma J; Ye X
    Int J Mol Med; 2017 Nov; 40(5):1357-1364. PubMed ID: 28901446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of a 5-feature gene model by support vector machine for classifying osteoporosis samples.
    Hu M; Zou L; Lu J; Yang Z; Chen Y; Xu Y; Sun C
    Bioengineered; 2021 Dec; 12(1):6821-6830. PubMed ID: 34622712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of signature genes and association with immune cells infiltration in pediatric septic shock.
    Fan J; Shi S; Qiu Y; Liu M; Shu Q
    Front Immunol; 2022; 13():1056750. PubMed ID: 36439140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Screening genes crucial for pediatric pilocytic astrocytoma using weighted gene coexpression network analysis combined with methylation data analysis.
    Zhao H; Cai W; Su S; Zhi D; Lu J; Liu S
    Cancer Gene Ther; 2014 Oct; 21(10):448-55. PubMed ID: 25257306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrative bioinformatics analysis of microarray data for identifying hub genes as diagnostic biomarkers of preeclampsia.
    Liu K; Fu Q; Liu Y; Wang C
    Biosci Rep; 2019 Sep; 39(9):. PubMed ID: 31416885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptomic markers in pediatric septic shock prognosis: an integrative analysis of gene expression profiles.
    Wang Q; Huang J; Chen X; Wang J; Fang F
    Braz J Med Biol Res; 2021; 54(3):e10152. PubMed ID: 33503200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of potential genetic biomarkers and molecular mechanism of smoking-related postmenopausal osteoporosis using weighted gene co-expression network analysis and machine learning.
    Li S; Chen B; Chen H; Hua Z; Shao Y; Yin H; Wang J
    PLoS One; 2021; 16(9):e0257343. PubMed ID: 34555052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of feature autophagy-related genes in patients with acute myocardial infarction based on bioinformatics analyses.
    Du Y; Zhao E; Zhang Y
    Biosci Rep; 2020 Jul; 40(7):. PubMed ID: 32597946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Support vector machine classifier for prediction of the metastasis of colorectal cancer.
    Zhi J; Sun J; Wang Z; Ding W
    Int J Mol Med; 2018 Mar; 41(3):1419-1426. PubMed ID: 29328363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.