BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 3201653)

  • 1. Cortical blood-flow in the porcine kidney. A radioactive microsphere study.
    Poulsen EU; Jørgensen JO; Madsen FF; Djurhuus JC
    Urol Res; 1988; 16(5):385-7. PubMed ID: 3201653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regional renal blood flow measurements using radioactive microspheres in a chronic porcine model with unilateral vesicoureteral reflux.
    Greenfield SP; Lewis W; Perry B; Wan J; Morin F
    J Urol; 1995 Aug; 154(2 Pt 2):816-9. PubMed ID: 7609187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Renal cortical perfusion--preliminary experience with the dynamic spatial reconstructor (DSR).
    Iwasaki T; Ritman EL; Fiksen-Olsen MJ; Romero JC; Knox FG
    Ann Biomed Eng; 1985; 13(3-4):259-71. PubMed ID: 4037455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of intrarenal blood-flow distribution in the rabbit using radioactive microspheres.
    Warren DJ; Ledingham JG
    Clin Sci Mol Med; 1975 Jan; 48(1):51-60. PubMed ID: 1112080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disturbances in renal cortical perfusion with reference to the microsphere technique.
    Sandin R; Feuk U; Modig J
    Acta Anaesthesiol Scand; 1990 Aug; 34(6):457-62. PubMed ID: 2239118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Renal blood flow measurements using radioactive microspheres in a porcine model with unilateral vesicoureteral reflux.
    Lewis WE; Greenfield SP; Perry B; Morin FC
    J Urol; 1991 Aug; 146(2 ( Pt 2)):649-53. PubMed ID: 1861319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skimming of microspheres in vitro: implications for measurement of intrarenal blood flow.
    Ofjord ES; Clausen G; Aukland K
    Am J Physiol; 1981 Sep; 241(3):H342-7. PubMed ID: 7282942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of the redistribution of renal cortical blood flow during hemorrhagic hypotension in the dog.
    Stein JH; Boonjarern S; Mauk RC; Ferris TF
    J Clin Invest; 1973 Jan; 52(1):39-47. PubMed ID: 4682388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of Escherichia coli bacteremia on in vitro perfused kidneys.
    Auguste LJ; Stone AM; Wise L
    Ann Surg; 1980 Jul; 192(1):65-8. PubMed ID: 6996623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increasing organ blood flow during cardiopulmonary bypass in pigs: comparison of dopamine and perfusion pressure.
    Mackay JH; Feerick AE; Woodson LC; Lin CY; Deyo DJ; Uchida T; Johnston WE
    Crit Care Med; 1995 Jun; 23(6):1090-8. PubMed ID: 7774221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reliability of the measurement of intrarenal haemodynamics in the dog, as determined by the radioactive microsphere technique.
    László K; Szöcs E ; Juszkó J; Bálint P
    Int Urol Nephrol; 1981; 13(3):207-20. PubMed ID: 7327896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the xenon-133 washout curve and radioactive microsphere distribution in the normal and hypoperfused dog kidney.
    Huland H; Leichtweiss HP; Schröder H; Jeschkies R
    Urol Int; 1982; 37(3):205-12. PubMed ID: 7123710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of nonpulsatile and pulsatile extracorporeal circulation on renal cortical blood flow.
    Sink JD; Chitwood WR; Hill RC; Wechsler AS
    Ann Thorac Surg; 1980 Jan; 29(1):57-62. PubMed ID: 7356809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renal intracortical blood flow and renin secretion after denervation by 6-hydroxydopamine.
    Bichet D; Marc-Aurèle J
    Can J Physiol Pharmacol; 1982 Feb; 60(2):184-92. PubMed ID: 7044503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of pulseless perfusion on the distribution of renal cortical blood flow and on renin release.
    Goodman TA; Gerard DF; Bernstein EF; Dilley RB
    Surgery; 1976 Jul; 80(1):31-9. PubMed ID: 1273764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of prostaglandins in the cortical distribution of renal blood flow following reductions in renal perfusion pressure.
    Opgenorth TJ; Fiksen-Olsen MJ; Romero JC
    Prostaglandins; 1987 Oct; 34(4):591-602. PubMed ID: 3432561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in intrarenal blood flow during sepsis.
    Stone AM; Stein T; LaFortune J; Wise L
    Surg Gynecol Obstet; 1979 May; 148(5):731-4. PubMed ID: 432786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of pulsatile and non-pulsatile cardiopulmonary bypass on regional renal blood flow in sheep.
    Nakamura K; Harasaki H; Fukumura F; Fukamachi K; Whalen R
    Scand Cardiovasc J; 2004 Mar; 38(1):59-63. PubMed ID: 15204249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Influence of various sodium loads on the intracortical distribution of renal blood flow. Microsphere study in rats].
    Lameire N; Ringoir S
    J Urol Nephrol (Paris); 1975 Sep; 81(9):703-6. PubMed ID: 1214315
    [No Abstract]   [Full Text] [Related]  

  • 20. Morphologic peculiarities of the renal cortical vasculature connected with blood redistribution in the kidney of the domestic pig.
    Vodenicharov A; Simoens P
    Anat Histol Embryol; 1998 Aug; 27(4):257-62. PubMed ID: 9741149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.