These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32016590)

  • 1. Nonlinear pulses at the interface and its relation to state and temperature.
    Kang KH; Schneider MF
    Eur Phys J E Soft Matter; 2020 Feb; 43(2):8. PubMed ID: 32016590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wave propagation in lipid monolayers.
    Griesbauer J; Wixforth A; Schneider MF
    Biophys J; 2009 Nov; 97(10):2710-6. PubMed ID: 19917224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Propagation of 2D pressure pulses in lipid monolayers and its possible implications for biology.
    Griesbauer J; Bössinger S; Wixforth A; Schneider MF
    Phys Rev Lett; 2012 May; 108(19):198103. PubMed ID: 23003093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collision and annihilation of nonlinear sound waves and action potentials in interfaces.
    Shrivastava S; Kang KH; Schneider MF
    J R Soc Interface; 2018 Jun; 15(143):. PubMed ID: 29925577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The living state: How cellular excitability is controlled by the thermodynamic state of the membrane.
    Fillafer C; Paeger A; Schneider MF
    Prog Biophys Mol Biol; 2021 Jul; 162():57-68. PubMed ID: 33058943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the Temperature Behavior of Pulse Propagation and Relaxation in Worms, Nerves and Gels.
    Fillafer C; Schneider MF
    PLoS One; 2013; 8(6):e66773. PubMed ID: 23805275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Line Tension Assists Membrane Permeation at the Transition Temperature in Mixed-Phase Lipid Bilayers.
    Yang L; Kindt JT
    J Phys Chem B; 2016 Nov; 120(45):11740-11750. PubMed ID: 27780354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of influence of bilayer melting on dynamics and thermodynamics of interfacial water.
    Debnath A; Ayappa KG; Maiti PK
    Phys Rev Lett; 2013 Jan; 110(1):018303. PubMed ID: 23383847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal acoustic radiation from multilamellar vesicles in lipid phase transition.
    Anosov AA; Barabanenkov YN; Kazanskij AS; Less YA; Sharakshane AS
    Chem Phys Lipids; 2008 Jun; 153(2):81-4. PubMed ID: 18381070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural organization of lipid phase and protein-lipid interface in apolipoprotein-phospholipid recombinants: influence of cholesterol.
    Dergunov AD; Taveirne J; Vanloo B; Caster H; Rosseneu M
    Biochim Biophys Acta; 1997 Jun; 1346(2):131-46. PubMed ID: 9219896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical studies of membrane state during action potential propagation.
    Fabiunke S; Fillafer C; Paeger A; Schneider MF
    Prog Biophys Mol Biol; 2021 Jul; 162():69-78. PubMed ID: 33227328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane phase transition during heating and cooling: molecular insight into reversible melting.
    Sun L; Böckmann RA
    Eur Biophys J; 2018 Mar; 47(2):151-164. PubMed ID: 28725998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Similarities between action potentials and acoustic pulses in a van der Waals fluid.
    Mussel M; Schneider MF
    Sci Rep; 2019 Feb; 9(1):2467. PubMed ID: 30792493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues.
    Benesch MG; Mannock DA; Lewis RN; McElhaney RN
    Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Structure and Permeability at the Interface between Phase-Separated Membrane Domains.
    Cordeiro RM
    J Phys Chem B; 2018 Jul; 122(27):6954-6965. PubMed ID: 29767519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protons at the speed of sound: Predicting specific biological signaling from physics.
    Fichtl B; Shrivastava S; Schneider MF
    Sci Rep; 2016 May; 6():22874. PubMed ID: 27216038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Submicrosecond phospholipid dynamics using a long-lived fluorescence emission anisotropy probe.
    Davenport L; Targowski P
    Biophys J; 1996 Oct; 71(4):1837-52. PubMed ID: 8889160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of cholesterol and ergosterol on the compressibility and volume fluctuations of phospholipid-sterol bilayers in the critical point region: a molecular acoustic and calorimetric study.
    Krivanek R; Okoro L; Winter R
    Biophys J; 2008 May; 94(9):3538-48. PubMed ID: 18199673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High pressure effect on phase transition behavior of lipid bilayers.
    Lai K; Wang B; Zhang Y; Zhang Y
    Phys Chem Chem Phys; 2012 Apr; 14(16):5744-52. PubMed ID: 22418786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid chain motion in an interdigitated gel phase: conventional and saturation transfer ESR of spin-labeled lipids in dipalmitoylphosphatidylcholine-glycerol dispersions.
    Bartucci R; Páli T; Marsh D
    Biochemistry; 1993 Jan; 32(1):274-81. PubMed ID: 8380335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.