These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32016706)

  • 1. Slow ring flips in aromatic cluster of GB1 studied by aromatic
    Dreydoppel M; Raum HN; Weininger U
    J Biomol NMR; 2020 Mar; 74(2-3):183-191. PubMed ID: 32016706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ring flips revisited: (13)C relaxation dispersion measurements of aromatic side chain dynamics and activation barriers in basic pancreatic trypsin inhibitor.
    Weininger U; Modig K; Akke M
    Biochemistry; 2014 Jul; 53(28):4519-25. PubMed ID: 24983918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slow aromatic ring flips detected despite near-degenerate NMR frequencies of the exchanging nuclei.
    Weininger U; Respondek M; Löw C; Akke M
    J Phys Chem B; 2013 Aug; 117(31):9241-7. PubMed ID: 23859599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aromatic ring-flipping in supercooled water: implications for NMR-based structural biology of proteins.
    Skalicky JJ; Mills JL; Sharma S; Szyperski T
    J Am Chem Soc; 2001 Jan; 123(3):388-97. PubMed ID: 11456540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR Studies of Aromatic Ring Flips to Probe Conformational Fluctuations in Proteins.
    Akke M; Weininger U
    J Phys Chem B; 2023 Jan; 127(3):591-599. PubMed ID: 36640108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aromatic ring flips in differently packed ubiquitin protein crystals from MAS NMR and MD.
    Gauto DF; Lebedenko OO; Becker LM; Ayala I; Lichtenecker R; Skrynnikov NR; Schanda P
    J Struct Biol X; 2023; 7():100079. PubMed ID: 36578472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free-Energy Landscape and Rate Estimation of the Aromatic Ring Flips in Basic Pancreatic Trypsin Inhibitors Using Metadynamics.
    Kulkarni M; Söderhjelm P
    J Chem Theory Comput; 2023 Oct; 19(19):6605-6618. PubMed ID: 37698852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualizing protein breathing motions associated with aromatic ring flipping.
    Mariño Pérez L; Ielasi FS; Bessa LM; Maurin D; Kragelj J; Blackledge M; Salvi N; Bouvignies G; Palencia A; Jensen MR
    Nature; 2022 Feb; 602(7898):695-700. PubMed ID: 35173330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing Fast Conformational Exchange of Aromatic Rings Using Residual Dipolar Couplings: Distinguishing Jumplike Flips from Other Exchange Mechanisms.
    Dreydoppel M; Akke M; Weininger U
    J Phys Chem B; 2022 Oct; 126(40):7950-7956. PubMed ID: 36180044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Rigid Core and Flexible Surface of Amyloid Fibrils Probed by Magic-Angle-Spinning NMR Spectroscopy of Aromatic Residues.
    Becker LM; Berbon M; Vallet A; Grelard A; Morvan E; Bardiaux B; Lichtenecker R; Ernst M; Loquet A; Schanda P
    Angew Chem Int Ed Engl; 2023 May; 62(19):e202219314. PubMed ID: 36738230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational exchange of aromatic side chains by
    Raum HN; Dreydoppel M; Weininger U
    J Biomol NMR; 2018 Oct; 72(1-2):105-114. PubMed ID: 30229369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of cation-pi interactions in biomolecular association. Design of peptides favoring interactions between cationic and aromatic amino acid side chains.
    Pletneva EV; Laederach AT; Fulton DB; Kostic NM
    J Am Chem Soc; 2001 Jul; 123(26):6232-45. PubMed ID: 11427046
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Dreydoppel M; Lichtenecker RJ; Akke M; Weininger U
    J Biomol NMR; 2021 Dec; 75(10-12):383-392. PubMed ID: 34510298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing structure and functional dynamics of (large) proteins with aromatic rings: L-GFT-TROSY (4,3)D HCCH NMR spectroscopy.
    Eletsky A; Atreya HS; Liu G; Szyperski T
    J Am Chem Soc; 2005 Oct; 127(42):14578-9. PubMed ID: 16231903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. OCRE Domains of Splicing Factors RBM5 and RBM10: Tyrosine Ring-Flip Frequencies Determined by Integrated Use of
    Martin BT; Malmstrom RD; Amaro RE; Wüthrich K
    Chembiochem; 2021 Feb; 22(3):565-570. PubMed ID: 32975902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Infrequent cavity-forming fluctuations in HPr from Staphylococcus carnosus revealed by pressure- and temperature-dependent tyrosine ring flips.
    Hattori M; Li H; Yamada H; Akasaka K; Hengstenberg W; Gronwald W; Kalbitzer HR
    Protein Sci; 2004 Dec; 13(12):3104-14. PubMed ID: 15557257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Equilibrium and Kinetic Unfolding of GB1: Stabilization of the Native State by Pressure.
    Dreydoppel M; Becker P; Raum HN; Gröger S; Balbach J; Weininger U
    J Phys Chem B; 2018 Sep; 122(38):8846-8852. PubMed ID: 30185038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal Isotope Labeling of Aromatic Amino Acid Side Chains for NMR Studies of Protein Dynamics.
    Weininger U
    Methods Enzymol; 2019; 614():67-86. PubMed ID: 30611433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of Hydrophobic Core Phenylalanine Residues Probed by Solid-State Deuteron NMR.
    Vugmeyster L; Ostrovsky D; Villafranca T; Sharp J; Xu W; Lipton AS; Hoatson GL; Vold RL
    J Phys Chem B; 2015 Nov; 119(47):14892-904. PubMed ID: 26529128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of specific protein association by 15N CPMG relaxation dispersion NMR: the GB1(A34F) monomer-dimer equilibrium.
    Jee J; Ishima R; Gronenborn AM
    J Phys Chem B; 2008 May; 112(19):6008-12. PubMed ID: 18004837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.