BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 32017147)

  • 1. A convolutional neural network-based model observer for breast CT images.
    Kim G; Han M; Shim H; Baek J
    Med Phys; 2020 Apr; 47(4):1619-1632. PubMed ID: 32017147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strategy to implement a convolutional neural network based ideal model observer via transfer learning for multi-slice simulated breast CT images.
    Kim G; Han M; Baek J
    Phys Med Biol; 2023 May; 68(11):. PubMed ID: 37137323
    [No Abstract]   [Full Text] [Related]  

  • 3. Convolutional neural network-based model observer for signal known statistically task in breast tomosynthesis images.
    Jang H; Baek J
    Med Phys; 2023 Oct; 50(10):6390-6408. PubMed ID: 36971505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A convolutional neural network-based anthropomorphic model observer for signal-known-statistically and background-known-statistically detection tasks.
    Han M; Baek J
    Phys Med Biol; 2020 Nov; 65(22):225025. PubMed ID: 33032268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pre-whitened matched filter and convolutional neural network based model observer performance for mass lesion detection in non-contrast breast CT.
    Lyu SH; Abbey CK; Hernandez AM; Boone JM
    Med Phys; 2023 Dec; 50(12):7558-7567. PubMed ID: 37646463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of supervised-learning approaches for designing a channelized observer for image quality assessment in CT.
    Pouget E; Dedieu V
    Med Phys; 2023 Jul; 50(7):4282-4295. PubMed ID: 36647620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A deep learning- and partial least square regression-based model observer for a low-contrast lesion detection task in CT.
    Gong H; Yu L; Leng S; Dilger SK; Ren L; Zhou W; Fletcher JG; McCollough CH
    Med Phys; 2019 May; 46(5):2052-2063. PubMed ID: 30889282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-dose CT denoising via convolutional neural network with an observer loss function.
    Han M; Shim H; Baek J
    Med Phys; 2021 Oct; 48(10):5727-5742. PubMed ID: 34387360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A performance comparison of anthropomorphic model observers for breast cone beam CT images: A single-slice and multislice study.
    Han M; Baek J
    Med Phys; 2019 Aug; 46(8):3431-3441. PubMed ID: 31106432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CNN as model observer in a liver lesion detection task for x-ray computed tomography: A phantom study.
    Kopp FK; Catalano M; Pfeiffer D; Fingerle AA; Rummeny EJ; Noël PB
    Med Phys; 2018 Oct; 45(10):4439-4447. PubMed ID: 30137658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A performance comparison of convolutional neural network-based image denoising methods: The effect of loss functions on low-dose CT images.
    Kim B; Han M; Shim H; Baek J
    Med Phys; 2019 Sep; 46(9):3906-3923. PubMed ID: 31306488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of human and Hotelling observer performance for a fan-beam CT signal detection task.
    Sanchez AA; Sidky EY; Reiser I; Pan X
    Med Phys; 2013 Mar; 40(3):031104. PubMed ID: 23464284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Channel Methods and Observer Models for the Task-Based Assessment of Multi-Projection Imaging in the Presence of Structured Anatomical Noise.
    Park S; Zhang G; Myers KJ
    IEEE Trans Med Imaging; 2016 Jun; 35(6):1431-42. PubMed ID: 26742128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of human observer performance on lesion detectability in single-slice and multislice dedicated breast cone beam CT images with breast anatomical background.
    Han M; Jang H; Baek J
    Med Phys; 2018 Dec; 45(12):5385-5396. PubMed ID: 30273955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation between human observer performance and model observer performance in differential phase contrast CT.
    Li K; Garrett J; Chen GH
    Med Phys; 2013 Nov; 40(11):111905. PubMed ID: 24320438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation between a 2D channelized Hotelling observer and human observers in a low-contrast detection task with multislice reading in CT.
    Yu L; Chen B; Kofler JM; Favazza CP; Leng S; Kupinski MA; McCollough CH
    Med Phys; 2017 Aug; 44(8):3990-3999. PubMed ID: 28555878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human and model observer performance for lesion detection in breast cone beam CT images with the FDK reconstruction.
    Han M; Kim B; Baek J
    PLoS One; 2018; 13(3):e0194408. PubMed ID: 29543868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Task-based model/human observer evaluation of SPIHT wavelet compression with human visual system-based quantization.
    Zhang Y; Pham BT; Eckstein MP
    Acad Radiol; 2005 Mar; 12(3):324-36. PubMed ID: 15766693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical observer for atherosclerotic plaque classification in spectral computed tomography.
    Lorsakul A; Fakhri GE; Worstell W; Ouyang J; Rakvongthai Y; Laine AF; Li Q
    J Med Imaging (Bellingham); 2016 Jul; 3(3):035501. PubMed ID: 27429999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of internal noise methods for Hotelling observer models.
    Zhang Y; Pham BT; Eckstein MP
    Med Phys; 2007 Aug; 34(8):3312-22. PubMed ID: 17879795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.