These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

420 related articles for article (PubMed ID: 32017296)

  • 21. Integrated hierarchical porous lignin-based carbon electrode for boosting membrane-free capacitive deionization areal adsorption capacity.
    Yin L; Wang X; Hu P; Xia H; Liang C; Qu W
    Int J Biol Macromol; 2024 Apr; 263(Pt 2):130065. PubMed ID: 38423912
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hierarchical MXene/Polypyrrole-Decorated Carbon Nanofibers for Asymmetrical Capacitive Deionization.
    Wang XR; Wang X; Nian HE; Chen T; Zhang L; Song S; Li JH; Wang Y
    ACS Appl Mater Interfaces; 2022 Nov; 14(47):53150-53164. PubMed ID: 36394639
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of Composite Nanostructured Electrodes for Water Desalination via Membrane Capacitive Deionization.
    Bakola V; Kotrotsiou O; Ntziouni A; Dragatogiannis D; Plakantonaki N; Trapalis C; Charitidis C; Kiparissides C
    Macromol Rapid Commun; 2024 Mar; 45(6):e2300640. PubMed ID: 38184786
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer.
    Kim YJ; Choi JH
    Water Res; 2010 Feb; 44(3):990-6. PubMed ID: 19896691
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High performance of membrane capacitive deionization with ZnS/g-C
    Wei S; Feng L; Zhang X; Sun Z; Bai H; Liu P
    Water Sci Technol; 2023 Dec; 88(11):2849-2861. PubMed ID: 38096073
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Charge and Potential Balancing for Optimized Capacitive Deionization Using Lignin-Derived, Low-Cost Activated Carbon Electrodes.
    Zornitta RL; Srimuk P; Lee J; Krüner B; Aslan M; Ruotolo LAM; Presser V
    ChemSusChem; 2018 Jul; 11(13):2101-2113. PubMed ID: 29710382
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel graphene-like electrodes for capacitive deionization.
    Li H; Zou L; Pan L; Sun Z
    Environ Sci Technol; 2010 Nov; 44(22):8692-7. PubMed ID: 20964326
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Desalination Using the Capacitive Deionization Technology with Graphite/AC Electrodes: Effect of the Flow Rate and Electrode Thickness.
    Martinez J; Colán M; Catillón R; Huamán J; Paria R; Sánchez L; Rodríguez JM
    Membranes (Basel); 2022 Jul; 12(7):. PubMed ID: 35877920
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancing Brackish Water Desalination using Magnetic Flow-electrode Capacitive Deionization.
    Xu L; Peng S; Mao Y; Zong Y; Zhang X; Wu D
    Water Res; 2022 Jun; 216():118290. PubMed ID: 35306460
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biobased polyporphyrin derived porous carbon electrodes for highly efficient capacitive deionization.
    Zhang W; Jin C; Shi Z; Zhu L; Chen L; Liu Y; Zhang H
    Chemosphere; 2022 Mar; 291(Pt 3):133113. PubMed ID: 34856237
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced Electrochemical Stability of a Zwitterionic-Polymer-Functionalized Electrode for Capacitive Deionization.
    Jung Y; Yang Y; Kim T; Shin HS; Hong S; Cha S; Kwon S
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6207-6217. PubMed ID: 29384362
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Concentration-Gradient Multichannel Flow-Stream Membrane Capacitive Deionization Cell for High Desalination Capacity of Carbon Electrodes.
    Kim C; Lee J; Srimuk P; Aslan M; Presser V
    ChemSusChem; 2017 Dec; 10(24):4914-4920. PubMed ID: 28685992
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced brackish water desalination in capacitive deionization with composite Zn-BTC MOF-incorporated electrodes.
    Ghorbanian A; Rowshanzamir S; Mehri F
    Sci Rep; 2024 Jul; 14(1):14999. PubMed ID: 38951566
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The influences of separators on capacitive deionization systems in the cycle of adsorption and desorption.
    Yao Q; Shi Z; Liu Q; Gu Z; Ning R
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3313-3319. PubMed ID: 29149445
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spinel LiMn
    Jiang Y; Li K; Alhassan SI; Cao Y; Deng H; Tan S; Wang H; Tang C; Chai L
    Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612838
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrode Materials for Desalination of Water via Capacitive Deionization.
    Kumar S; Aldaqqa NM; Alhseinat E; Shetty D
    Angew Chem Int Ed Engl; 2023 Aug; 62(35):e202302180. PubMed ID: 37052355
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel graphene oxide-based ceramic composite as an efficient electrode for capacitive deionization.
    Khalil KA; Barakat NAM; Motlak M; Al-Mubaddel FS
    Sci Rep; 2020 Jun; 10(1):9676. PubMed ID: 32541891
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self similarities in desalination dynamics and performance using capacitive deionization.
    Ramachandran A; Hemmatifar A; Hawks SA; Stadermann M; Santiago JG
    Water Res; 2018 Sep; 140():323-334. PubMed ID: 29734040
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In Situ Formation of Prussian Blue Analogue Nanoparticles Decorated with Three-Dimensional Carbon Nanosheet Networks for Superior Hybrid Capacitive Deionization Performance.
    Wang S; Wang G; Wang Y; Song H; Lv S; Li T; Li C
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):44049-44057. PubMed ID: 32880429
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Flow-electrode capacitive deionization with highly enhanced salt removal performance utilizing high-aspect ratio functionalized carbon nanotubes.
    Cho Y; Yoo CY; Lee SW; Yoon H; Lee KS; Yang S; Kim DK
    Water Res; 2019 Mar; 151():252-259. PubMed ID: 30605773
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.