These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 32017410)

  • 1. Designing Self-Supported Metal-Organic Framework Derived Catalysts for Electrochemical Water Splitting.
    Singh B; Indra A
    Chem Asian J; 2020 Mar; 15(6):607-623. PubMed ID: 32017410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing MOF Nanoarchitectures for Electrochemical Water Splitting.
    Zhang B; Zheng Y; Ma T; Yang C; Peng Y; Zhou Z; Zhou M; Li S; Wang Y; Cheng C
    Adv Mater; 2021 Apr; 33(17):e2006042. PubMed ID: 33749910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MOF-based/derived catalysts for electrochemical overall water splitting.
    He Y; Liu W; Liu J
    J Colloid Interface Sci; 2024 May; 661():409-435. PubMed ID: 38306750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Design of Water Oxidation Electrocatalysts from Nanoscale Metal-Organic Frameworks.
    Shao Q; Yang J; Huang X
    Chemistry; 2018 Oct; 24(57):15143-15155. PubMed ID: 29687926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-organic framework derived hollow CoS
    Guan C; Liu X; Elshahawy AM; Zhang H; Wu H; Pennycook SJ; Wang J
    Nanoscale Horiz; 2017 Nov; 2(6):342-348. PubMed ID: 32260664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing Self-Supported Electrocatalysts for Electrochemical Water Splitting: Surface/Interface Engineering toward Enhanced Electrocatalytic Performance.
    Wang P; Wang B
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):59593-59617. PubMed ID: 34878246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal Organic Framework Derived Materials: Progress and Prospects for the Energy Conversion and Storage.
    Indra A; Song T; Paik U
    Adv Mater; 2018 Sep; 30(39):e1705146. PubMed ID: 29984451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic Modulation of Non-Precious-Metal Electrocatalysts for Advanced Water Splitting.
    Jiang WJ; Tang T; Zhang Y; Hu JS
    Acc Chem Res; 2020 Jun; 53(6):1111-1123. PubMed ID: 32466638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site Isolation in Metal-Organic Frameworks Enables Novel Transition Metal Catalysis.
    Drake T; Ji P; Lin W
    Acc Chem Res; 2018 Sep; 51(9):2129-2138. PubMed ID: 30129753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfaces in Heterogeneous Catalysts: Advancing Mechanistic Understanding through Atomic-Scale Measurements.
    Gao W; Hood ZD; Chi M
    Acc Chem Res; 2017 Apr; 50(4):787-795. PubMed ID: 28207240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphology-Controlled Metal Sulfides and Phosphides for Electrochemical Water Splitting.
    Joo J; Kim T; Lee J; Choi SI; Lee K
    Adv Mater; 2019 Apr; 31(14):e1806682. PubMed ID: 30706578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MOF-derived nanoarrays as advanced electrocatalysts for water splitting.
    Zhang Y; Qi L
    Nanoscale; 2022 Sep; 14(34):12196-12218. PubMed ID: 35968835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-Dimensional Metal Organic Framework Nanosheets as Bifunctional Catalyst for Electrochemical and Photoelectrochemical Water Oxidation.
    Liu C; Shen X; Johnson G; Zhang Y; Zhang C; Chen J; Li L; Sheehan C; Peng Z; Zhang S
    Front Chem; 2020; 8():604239. PubMed ID: 33330399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revisiting Metal-Organic Frameworks for Oxygen Evolution: A Case Study.
    Mousazade Y; Mohammadi MR; Chernev P; Bagheri R; Song Z; Dau H; Najafpour MM
    Inorg Chem; 2020 Oct; 59(20):15335-15342. PubMed ID: 33021376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling Transition Metal Catalysts with Ir for Enhanced Electrochemical Water Splitting Activity.
    Yang X; Liu Y; Guo R; Xiao J
    Chem Rec; 2022 Dec; 22(12):e202200176. PubMed ID: 36000851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MOF-derived transition metal-based catalysts for the electrochemical reduction of CO
    Li J; Zhang B; Dong B; Feng L
    Chem Commun (Camb); 2023 Mar; 59(24):3523-3535. PubMed ID: 36847576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vertically Aligned Metal-Organic Framework Derived from Sacrificial Cobalt Nanowire Template Interconnected with Nickel Foam Supported Selenite Network as an Integrated 3D Electrode for Overall Water Splitting.
    Muthurasu A; Dahal B; Chhetri K; Kim HY
    Inorg Chem; 2020 Mar; 59(6):3817-3827. PubMed ID: 32090552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro/macrostructure and multicomponent design of catalysts by MOF-derived strategy: Opportunities for the application of nanomaterials-based advanced oxidation processes in wastewater treatment.
    Li X; Wu D; Hua T; Lan X; Han S; Cheng J; Du KS; Hu Y; Chen Y
    Sci Total Environ; 2022 Jan; 804():150096. PubMed ID: 34798724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxide-supported IrNiO(x) core-shell particles as efficient, cost-effective, and stable catalysts for electrochemical water splitting.
    Nong HN; Oh HS; Reier T; Willinger E; Willinger MG; Petkov V; Teschner D; Strasser P
    Angew Chem Int Ed Engl; 2015 Mar; 54(10):2975-9. PubMed ID: 25611732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.