These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 32017545)

  • 1. Sc
    Banerjee S; Draksharapu A; Crossland PM; Fan R; Guo Y; Swart M; Que L
    J Am Chem Soc; 2020 Mar; 142(9):4285-4297. PubMed ID: 32017545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protonation of a peroxodiiron(III) complex and conversion to a diiron(III/IV) intermediate: implications for proton-assisted O-O bond cleavage in nonheme diiron enzymes.
    Cranswick MA; Meier KK; Shan X; Stubna A; Kaizer J; Mehn MP; Münck E; Que L
    Inorg Chem; 2012 Oct; 51(19):10417-26. PubMed ID: 22971084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate-triggered activation of a synthetic [Fe2(μ-O)2] diamond core for C-H bond cleavage.
    Xue G; Pokutsa A; Que L
    J Am Chem Soc; 2011 Oct; 133(41):16657-67. PubMed ID: 21899336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A synthetic precedent for the [FeIV2(mu-O)2] diamond core proposed for methane monooxygenase intermediate Q.
    Xue G; Wang D; De Hont R; Fiedler AT; Shan X; Münck E; Que L
    Proc Natl Acad Sci U S A; 2007 Dec; 104(52):20713-8. PubMed ID: 18093922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the syn disposition of nitrogen donors in non-heme diiron enzymes. Synthesis, characterization, and hydrogen peroxide reactivity of diiron(III) complexes with the syn N-donor ligand H2BPG2DEV.
    Friedle S; Kodanko JJ; Morys AJ; Hayashi T; Moënne-Loccoz P; Lippard SJ
    J Am Chem Soc; 2009 Oct; 131(40):14508-20. PubMed ID: 19757795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dioxygen activation in soluble methane monooxygenase.
    Tinberg CE; Lippard SJ
    Acc Chem Res; 2011 Apr; 44(4):280-8. PubMed ID: 21391602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mössbauer and DFT study of the ferromagnetically coupled diiron(IV) precursor to a complex with an Fe(IV)(2)O(2) diamond core.
    Martinho M; Xue G; Fiedler AT; Que L; Bominaar EL; Münck E
    J Am Chem Soc; 2009 Apr; 131(16):5823-30. PubMed ID: 19338307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Reactive Co
    Li Y; Handunneththige S; Farquhar ER; Guo Y; Talipov MR; Li F; Wang D
    J Am Chem Soc; 2019 Dec; 141(51):20127-20136. PubMed ID: 31794198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of a chemical trigger for electron transfer to characterize a precursor to cluster X in assembly of the iron-radical cofactor of Escherichia coli ribonucleotide reductase.
    Saleh L; Krebs C; Ley BA; Naik S; Huynh BH; Bollinger JM
    Biochemistry; 2004 May; 43(20):5953-64. PubMed ID: 15147179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Explorations of the nonheme high-valent iron-oxo landscape: crystal structure of a synthetic complex with an [FeIV2(μ-O)
    Rohde GT; Xue G; Que L
    Faraday Discuss; 2022 May; 234(0):109-128. PubMed ID: 35171169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of Dioxygen by a Mononuclear Nonheme Iron Complex: Sequential Peroxo, Oxo, and Hydroxo Intermediates.
    Gordon JB; Vilbert AC; DiMucci IM; MacMillan SN; Lancaster KM; Moënne-Loccoz P; Goldberg DP
    J Am Chem Soc; 2019 Nov; 141(44):17533-17547. PubMed ID: 31647656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating the identity and diiron core transformations of a (μ-oxo)diiron(III) complex supported by electron-rich tris(pyridyl-2-methyl)amine ligands.
    Do LH; Xue G; Que L; Lippard SJ
    Inorg Chem; 2012 Feb; 51(4):2393-402. PubMed ID: 22264120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autocatalytic formation of an iron(IV)-oxo complex via scandium ion-promoted radical chain autoxidation of an iron(II) complex with dioxygen and tetraphenylborate.
    Nishida Y; Lee YM; Nam W; Fukuzumi S
    J Am Chem Soc; 2014 Jun; 136(22):8042-9. PubMed ID: 24809677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic mononuclear nonheme iron-oxygen intermediates.
    Nam W
    Acc Chem Res; 2015 Aug; 48(8):2415-23. PubMed ID: 26203519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ce
    Draksharapu A; Xu S; Que L
    Angew Chem Int Ed Engl; 2020 Dec; 59(50):22484-22488. PubMed ID: 32902902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic analogue of the [Fe(2)(mu-OH)(2)(mu-O(2)CR)](3+) core of soluble methane monooxygenase hydroxylase via synthesis and dioxygen reactivity of carboxylate-bridged diiron(II) complexes.
    Lee D; Lippard SJ
    Inorg Chem; 2002 Feb; 41(4):827-37. PubMed ID: 11849083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interplay of Electronic Cooperativity and Exchange Coupling in Regulating the Reactivity of Diiron(IV)-oxo Complexes towards C-H and O-H Bond Activation.
    Ansari A; Ansari M; Singha A; Rajaraman G
    Chemistry; 2017 Jul; 23(42):10110-10125. PubMed ID: 28498623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational reprogramming of the R2 subunit of Escherichia coli ribonucleotide reductase into a self-hydroxylating monooxygenase.
    Baldwin J; Voegtli WC; Khidekel N; Moënne-Loccoz P; Krebs C; Pereira AS; Ley BA; Huynh BH; Loehr TM; Riggs-Gelasco PJ; Rosenzweig AC; Bollinger JM
    J Am Chem Soc; 2001 Jul; 123(29):7017-30. PubMed ID: 11459480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate-dependent H/D kinetic isotope effects and the role of the di(μ-oxo)diiron(IV) core in soluble methane monooxygenase: a theoretical study.
    Mai BK; Kim Y
    Chemistry; 2014 May; 20(21):6532-41. PubMed ID: 24715359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geometry of the soluble methane monooxygenase catalytic diiron center in two oxidation states.
    Rosenzweig AC; Nordlund P; Takahara PM; Frederick CA; Lippard SJ
    Chem Biol; 1995 Sep; 2(9):409-18. PubMed ID: 9432288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.