These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 32017605)

  • 1. Development and application of artificial intelligence in cardiac imaging.
    Jiang B; Guo N; Ge Y; Zhang L; Oudkerk M; Xie X
    Br J Radiol; 2020 Sep; 93(1113):20190812. PubMed ID: 32017605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning analysis of left ventricular myocardium in CT angiographic intermediate-degree coronary stenosis improves the diagnostic accuracy for identification of functionally significant stenosis.
    van Hamersvelt RW; Zreik M; Voskuil M; Viergever MA; Išgum I; Leiner T
    Eur Radiol; 2019 May; 29(5):2350-2359. PubMed ID: 30421020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial intelligence in cardiac radiology.
    van Assen M; Muscogiuri G; Caruso D; Lee SJ; Laghi A; De Cecco CN
    Radiol Med; 2020 Nov; 125(11):1186-1199. PubMed ID: 32946002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CT myocardial perfusion and coronary CT angiography: Influence of coronary calcium on a stress-rest protocol.
    Ladeiras-Lopes R; Bettencourt N; Ferreira N; Sampaio F; Pires-Morais G; Santos L; Melica B; Rodrigues A; Braga P; Leite-Moreira A; Silva-Cardoso J; Gama V
    J Cardiovasc Comput Tomogr; 2016; 10(3):215-20. PubMed ID: 26869367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning analysis of the myocardium in coronary CT angiography for identification of patients with functionally significant coronary artery stenosis.
    Zreik M; Lessmann N; van Hamersvelt RW; Wolterink JM; Voskuil M; Viergever MA; Leiner T; Išgum I
    Med Image Anal; 2018 Feb; 44():72-85. PubMed ID: 29197253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiogenomics and Artificial Intelligence Approaches Applied to Cardiac Computed Tomography Angiography and Cardiac Magnetic Resonance for Precision Medicine in Coronary Heart Disease: A Systematic Review.
    Infante T; Cavaliere C; Punzo B; Grimaldi V; Salvatore M; Napoli C
    Circ Cardiovasc Imaging; 2021 Dec; 14(12):1133-1146. PubMed ID: 34915726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial intelligence in cardiac computed tomography.
    Aromiwura AA; Settle T; Umer M; Joshi J; Shotwell M; Mattumpuram J; Vorla M; Sztukowska M; Contractor S; Amini A; Kalra DK
    Prog Cardiovasc Dis; 2023; 81():54-77. PubMed ID: 37689230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coronary CT angiography derived fractional flow reserve: Methodology and evaluation of a point of care algorithm.
    Coenen A; Lubbers MM; Kurata A; Kono A; Dedic A; Chelu RG; Dijkshoorn ML; van Geuns RJ; Schoebinger M; Itu L; Sharma P; Nieman K
    J Cardiovasc Comput Tomogr; 2016; 10(2):105-13. PubMed ID: 26747231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the ratio of coronary arterial lumen volume to left ventricle myocardial mass derived from coronary CT angiography on fractional flow reserve.
    Taylor CA; Gaur S; Leipsic J; Achenbach S; Berman DS; Jensen JM; Dey D; Bøtker HE; Kim HJ; Khem S; Wilk A; Zarins CK; Bezerra H; Lesser J; Ko B; Narula J; Ahmadi A; Øvrehus KA; St Goar F; De Bruyne B; Nørgaard BL
    J Cardiovasc Comput Tomogr; 2017 Nov; 11(6):429-436. PubMed ID: 28789941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of iterative reconstruction algorithms on machine learning-based coronary CT angiography-derived fractional flow reserve (CT-FFR
    Li S; Chen C; Qin L; Gu S; Zhang H; Yan F; Yang W
    Int J Cardiovasc Imaging; 2020 Jun; 36(6):1177-1185. PubMed ID: 32130576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial intelligence machine learning-based coronary CT fractional flow reserve (CT-FFR
    Mastrodicasa D; Albrecht MH; Schoepf UJ; Varga-Szemes A; Jacobs BE; Gassenmaier S; De Santis D; Eid MH; van Assen M; Tesche C; Mantini C; De Cecco CN
    J Cardiovasc Comput Tomogr; 2019; 13(6):331-335. PubMed ID: 30391256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current and Future Applications of Artificial Intelligence in Cardiac CT.
    Joshi M; Melo DP; Ouyang D; Slomka PJ; Williams MC; Dey D
    Curr Cardiol Rep; 2023 Mar; 25(3):109-117. PubMed ID: 36708505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional cardiac CT-Going beyond Anatomical Evaluation of Coronary Artery Disease with Cine CT, CT-FFR, CT Perfusion and Machine Learning.
    Peper J; Suchá D; Swaans M; Leiner T
    Br J Radiol; 2020 Sep; 93(1113):20200349. PubMed ID: 32783626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation of FFR-derived from CT and stress perfusion CMR with invasive FFR in intermediate-grade coronary artery stenosis.
    Ghekiere O; Bielen J; Leipsic J; Dewilde W; Mancini I; Hansen D; Dendale P; Nchimi A
    Int J Cardiovasc Imaging; 2019 Mar; 35(3):559-568. PubMed ID: 30284138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peri-coronary inflammation is associated with findings on coronary computed tomography angiography and fractional flow reserve.
    Hoshino M; Yang S; Sugiyama T; Zhang J; Kanaji Y; Yamaguchi M; Hada M; Sumino Y; Horie T; Nogami K; Ueno H; Misawa T; Usui E; Murai T; Lee T; Yonetsu T; Kakuta T
    J Cardiovasc Comput Tomogr; 2020; 14(6):483-489. PubMed ID: 32057707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coronary CT angiography-derived plaque quantification with artificial intelligence CT fractional flow reserve for the identification of lesion-specific ischemia.
    von Knebel Doeberitz PL; De Cecco CN; Schoepf UJ; Duguay TM; Albrecht MH; van Assen M; Bauer MJ; Savage RH; Pannell JT; De Santis D; Johnson AA; Varga-Szemes A; Bayer RR; Schönberg SO; Nance JW; Tesche C
    Eur Radiol; 2019 May; 29(5):2378-2387. PubMed ID: 30523456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemodynamic impact of coronary stenosis using computed tomography: comparison between noninvasive fractional flow reserve and 3D fusion of coronary angiography with stress myocardial perfusion.
    Patel AR; Maffessanti F; Patel MB; Kebed K; Narang A; Singh A; Medvedofsky D; Zaidi SJ; Mediratta A; Goyal N; Kachenoura N; Lang RM; Mor-Avi V
    Int J Cardiovasc Imaging; 2019 Sep; 35(9):1733-1743. PubMed ID: 31073698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noninvasive diagnosis of ischemia-causing coronary stenosis using CT angiography: diagnostic value of transluminal attenuation gradient and fractional flow reserve computed from coronary CT angiography compared to invasively measured fractional flow reserve.
    Yoon YE; Choi JH; Kim JH; Park KW; Doh JH; Kim YJ; Koo BK; Min JK; Erglis A; Gwon HC; Choe YH; Choi DJ; Kim HS; Oh BH; Park YB
    JACC Cardiovasc Imaging; 2012 Nov; 5(11):1088-96. PubMed ID: 23153908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prognostic value of CT myocardial perfusion imaging and CT-derived fractional flow reserve for major adverse cardiac events in patients with coronary artery disease.
    van Assen M; De Cecco CN; Eid M; von Knebel Doeberitz P; Scarabello M; Lavra F; Bauer MJ; Mastrodicasa D; Duguay TM; Zaki B; Lo GG; Choe YH; Wang Y; Sahbaee P; Tesche C; Oudkerk M; Vliegenthart R; Schoepf UJ
    J Cardiovasc Comput Tomogr; 2019; 13(3):26-33. PubMed ID: 30796003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fusion of CT coronary angiography and whole-heart dynamic 3D cardiac MR perfusion: building a framework for comprehensive cardiac imaging.
    von Spiczak J; Manka R; Gotschy A; Oebel S; Kozerke S; Hamada S; Alkadhi H
    Int J Cardiovasc Imaging; 2018 Apr; 34(4):649-660. PubMed ID: 29080955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.