These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 32018088)
1. Sustainable feedstock for bioethanol production: Impact of spatial resolution on the design of a sustainable biomass supply-chain. Sharara MA; Sahoo K; Reddy AD; Kim S; Zhang X; Dale B; Jones CD; Izaurralde RC; Runge TM Bioresour Technol; 2020 Apr; 302():122896. PubMed ID: 32018088 [TBL] [Abstract][Full Text] [Related]
2. Total environmental impacts of biofuels from corn stover using a hybrid life cycle assessment model combining process life cycle assessment and economic input-output life cycle assessment. Liu C; Huang Y; Wang X; Tai Y; Liu L; Liu H Integr Environ Assess Manag; 2018 Jan; 14(1):139-149. PubMed ID: 28796442 [TBL] [Abstract][Full Text] [Related]
3. Perennialization and Cover Cropping Mitigate Soil Carbon Loss from Residue Harvesting. Jones CD; Oates LG; Robertson GP; Izaurralde RC J Environ Qual; 2018 Jul; 47(4):710-717. PubMed ID: 30025060 [TBL] [Abstract][Full Text] [Related]
4. Spatial optimization of cropping pattern for sustainable food and biofuel production with minimal downstream pollution. Femeena PV; Sudheer KP; Cibin R; Chaubey I J Environ Manage; 2018 Apr; 212():198-209. PubMed ID: 29432999 [TBL] [Abstract][Full Text] [Related]
5. Simulated Biomass Sorghum GHG Reduction Potential is Similar to Maize. Kent J; Hartman MD; Lee DK; Hudiburg T Environ Sci Technol; 2020 Oct; 54(19):12456-12466. PubMed ID: 32856896 [TBL] [Abstract][Full Text] [Related]
6. Environmental and economic trade-offs in a watershed when using corn stover for bioenergy. Gramig BM; Reeling CJ; Cibin R; Chaubey I Environ Sci Technol; 2013 Feb; 47(4):1784-91. PubMed ID: 23339778 [TBL] [Abstract][Full Text] [Related]
7. An agent-based modeling approach for determining corn stover removal rate and transboundary effects. Gan J; Langeveld JW; Smith CT Environ Manage; 2014 Feb; 53(2):333-42. PubMed ID: 24276896 [TBL] [Abstract][Full Text] [Related]
8. Generating a geospatial database of U.S. regional feedstock production for use in evaluating the environmental footprint of biofuels. Holder CT; Cleland JC; LeDuc SD; Andereck Z; Hogan C; Martin KM J Air Waste Manag Assoc; 2016 Apr; 66(4):356-65. PubMed ID: 26727486 [TBL] [Abstract][Full Text] [Related]
9. Projection of corn production and stover-harvesting impacts on soil organic carbon dynamics in the U.S. Temperate Prairies. Wu Y; Liu S; Young CJ; Dahal D; Sohl TL; Davis B Sci Rep; 2015 Jun; 5():10830. PubMed ID: 26027873 [TBL] [Abstract][Full Text] [Related]
10. Spatially and Temporally Explicit Life Cycle Environmental Impacts of Soybean Production in the U.S. Midwest. Romeiko XX; Lee EK; Sorunmu Y; Zhang X Environ Sci Technol; 2020 Apr; 54(8):4758-4768. PubMed ID: 32202767 [TBL] [Abstract][Full Text] [Related]
11. An analysis of net energy production and feedstock availability for biobutanol and bioethanol. Swana J; Yang Y; Behnam M; Thompson R Bioresour Technol; 2011 Jan; 102(2):2112-7. PubMed ID: 20843683 [TBL] [Abstract][Full Text] [Related]
12. Long-term no-till and stover retention each decrease the global warming potential of irrigated continuous corn. Jin VL; Schmer MR; Stewart CE; Sindelar AJ; Varvel GE; Wienhold BJ Glob Chang Biol; 2017 Jul; 23(7):2848-2862. PubMed ID: 28135027 [TBL] [Abstract][Full Text] [Related]
13. Life cycle assessment of first-generation biofuels using a nitrogen crop model. Gallejones P; Pardo G; Aizpurua A; del Prado A Sci Total Environ; 2015 Feb; 505():1191-201. PubMed ID: 25461117 [TBL] [Abstract][Full Text] [Related]
14. Biogeochemical Research Priorities for Sustainable Biofuel and Bioenergy Feedstock Production in the Americas. Gollany HT; Titus BD; Scott DA; Asbjornsen H; Resh SC; Chimner RA; Kaczmarek DJ; Leite LF; Ferreira AC; Rod KA; Hilbert J; Galdos MV; Cisz ME Environ Manage; 2015 Dec; 56(6):1330-55. PubMed ID: 26006220 [TBL] [Abstract][Full Text] [Related]
15. Availability of corn stover as a sustainable feedstock for bioethanol production. Kadam KL; McMillan JD Bioresour Technol; 2003 May; 88(1):17-25. PubMed ID: 12573559 [TBL] [Abstract][Full Text] [Related]
16. Recent Land Use Change to Agriculture in the U.S. Lake States: Impacts on Cellulosic Biomass Potential and Natural Lands. Mladenoff DJ; Sahajpal R; Johnson CP; Rothstein DE PLoS One; 2016; 11(2):e0148566. PubMed ID: 26866474 [TBL] [Abstract][Full Text] [Related]
17. Integrating Hybrid Life Cycle Assessment with Multiobjective Optimization: A Modeling Framework. Yue D; Pandya S; You F Environ Sci Technol; 2016 Feb; 50(3):1501-9. PubMed ID: 26752618 [TBL] [Abstract][Full Text] [Related]
18. Geospatial assessment of bioenergy land use and its impacts on soil erosion in the U.S. Midwest. SooHoo WM; Wang C; Li H J Environ Manage; 2017 Apr; 190():188-196. PubMed ID: 28049088 [TBL] [Abstract][Full Text] [Related]
19. Biofuel supply chain management in the circular economy transition: An inclusive knowledge map of the field. Ranjbari M; Shams Esfandabadi Z; Ferraris A; Quatraro F; Rehan M; Nizami AS; Gupta VK; Lam SS; Aghbashlo M; Tabatabaei M Chemosphere; 2022 Jun; 296():133968. PubMed ID: 35181422 [TBL] [Abstract][Full Text] [Related]
20. Cellulosic biofuels from crop residue and groundwater extraction in the US Plains: the case of Nebraska. Sesmero JP J Environ Manage; 2014 Nov; 144():218-25. PubMed ID: 24956467 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]