These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 32018093)

  • 1. A new strategy to capture single biological micro particles at the interface between a water film and substrate by ultrasonic tweezers.
    Liu Q; Tang Q; Hu J
    Ultrasonics; 2020 Apr; 103():106067. PubMed ID: 32018093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Performance Ultrasonic Tweezers for Manipulation of Motile and Still Single Cells in a Droplet.
    Liu Q; Hu J; Minin IV; Minin OV
    Ultrasound Med Biol; 2019 Nov; 45(11):3018-3027. PubMed ID: 31481255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled removal of micro/nanoscale particles in submillimeter-diameter area on a substrate.
    Liu P; Hu J
    Rev Sci Instrum; 2017 Oct; 88(10):105003. PubMed ID: 29092512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A pi-shaped ultrasonic tweezers concept for manipulation of small particles.
    Hu J; Santoso AK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Nov; 51(11):1499-507. PubMed ID: 15600095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element modeling of a microparticle manipulator.
    Neild A; Oberti S; Haake A; Dual J
    Ultrasonics; 2006 Dec; 44 Suppl 1():e455-60. PubMed ID: 16797643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rotation of non-spherical micro-particles by amplitude modulation of superimposed orthogonal ultrasonic modes.
    Schwarz T; Petit-Pierre G; Dual J
    J Acoust Soc Am; 2013 Mar; 133(3):1260-8. PubMed ID: 23463999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement in resolution of laser capture microdissection using near-field probe to capture nanoparticles.
    Chen CM; Lee JA; Yen CF
    IEEE Trans Nanobioscience; 2009 Jun; 8(2):113-9. PubMed ID: 19336290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An adjustable multi-scale single beam acoustic tweezers based on ultrahigh frequency ultrasonic transducer.
    Chen X; Lam KH; Chen R; Chen Z; Yu P; Chen Z; Shung KK; Zhou Q
    Biotechnol Bioeng; 2017 Nov; 114(11):2637-2647. PubMed ID: 28654158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous micro-feeding of fine cohesive powders actuated by pulse inertia force and acoustic radiation force in ultrasonic standing wave field.
    Wang H; Wu L; Zhang T; Chen R; Zhang L
    Int J Pharm; 2018 Jul; 545(1-2):153-162. PubMed ID: 29729402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential-well model in acoustic tweezers.
    Kang ST; Yeh CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1451-9. PubMed ID: 20529720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental study on inter-particle acoustic forces.
    Garcia-Sabaté A; Castro A; Hoyos M; González-Cinca R
    J Acoust Soc Am; 2014 Mar; 135(3):1056-63. PubMed ID: 24606249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasonic trapping of small particles by a vibrating rod.
    Liu Y; Hu J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):798-805. PubMed ID: 19406708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterning of microspheres and microbubbles in an acoustic tweezers.
    Bernassau AL; Macpherson PG; Beeley J; Drinkwater BW; Cumming DR
    Biomed Microdevices; 2013 Apr; 15(2):289-97. PubMed ID: 23225102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Round-tip dielectrophoresis-based tweezers for single micro-object manipulation.
    Kodama T; Osaki T; Kawano R; Kamiya K; Miki N; Takeuchi S
    Biosens Bioelectron; 2013 Sep; 47():206-12. PubMed ID: 23570681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-chip ultrasonic manipulation of microparticles by using the flexural vibration of a glass substrate.
    Yamamoto R; Koyama D; Matsukawa M
    Ultrasonics; 2017 Aug; 79():81-86. PubMed ID: 28453970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plate-shaped non-contact ultrasonic transporter using flexural vibration.
    Ishii T; Mizuno Y; Koyama D; Nakamura K; Harada K; Uchida Y
    Ultrasonics; 2014 Feb; 54(2):455-60. PubMed ID: 23876434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling acoustic streaming in an ultrasonic heptagonal tweezers with application to cell manipulation.
    Bernassau AL; Glynne-Jones P; Gesellchen F; Riehle M; Hill M; Cumming DR
    Ultrasonics; 2014 Jan; 54(1):268-74. PubMed ID: 23725599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Ultrasonic Tweezer With Multiple Manipulation Functions Based on the Double-Parabolic-Reflector Wave-Guided High-Power Ultrasonic Transducer.
    Liu Q; Chen K; Hu J; Morita T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Nov; 67(11):2471-2474. PubMed ID: 32755855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microparticle manipulation in millimetre scale ultrasonic standing wave chambers.
    Hawkes JJ; Barrow D; Coakley WT
    Ultrasonics; 1998 Aug; 36(9):925-31. PubMed ID: 9735860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screen-printed ultrasonic 2-D matrix array transducers for microparticle manipulation.
    Qiu Y; Wang H; Gebhardt S; Bolhovitins A; Démoré CE; Schönecker A; Cochran S
    Ultrasonics; 2015 Sep; 62():136-46. PubMed ID: 26026870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.