These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 32018096)

  • 1. Tuning melatonin receptor subtype selectivity in oxadiazolone-based analogues: Discovery of QR2 ligands and NRF2 activators with neurogenic properties.
    Herrera-Arozamena C; Estrada-Valencia M; Pérez C; Lagartera L; Morales-García JA; Pérez-Castillo A; Franco-Gonzalez JF; Michalska P; Duarte P; León R; López MG; Mills A; Gago F; García-Yagüe ÁJ; Fernández-Ginés R; Cuadrado A; Rodríguez-Franco MI
    Eur J Med Chem; 2020 Mar; 190():112090. PubMed ID: 32018096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of a potent melatonin-based inhibitor of quinone reductase-2 with neuroprotective and neurogenic properties.
    Herrera-Arozamena C; Estrada-Valencia M; García-Díez G; Pérez C; León R; Infantes L; Morales-García JA; Pérez-Castillo A; Del Sastre E; López MG; Rodríguez-Franco MI
    Eur J Med Chem; 2024 Nov; 277():116763. PubMed ID: 39146834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear factor (erythroid-derived 2)-like 2 (NRF2) drug discovery: Biochemical toolbox to develop NRF2 activators by reversible binding of Kelch-like ECH-associated protein 1 (KEAP1).
    Bresciani A; Missineo A; Gallo M; Cerretani M; Fezzardi P; Tomei L; Cicero DO; Altamura S; Santoprete A; Ingenito R; Bianchi E; Pacifici R; Dominguez C; Munoz-Sanjuan I; Harper S; Toledo-Sherman L; Park LC
    Arch Biochem Biophys; 2017 Oct; 631():31-41. PubMed ID: 28801166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New quinoxaline derivatives as potential MT₁ and MT₂ receptor ligands.
    Ancizu S; Castrillo N; Pérez-Silanes S; Aldana I; Monge A; Delagrange P; Caignard DH; Galiano S
    Molecules; 2012 Jun; 17(7):7737-57. PubMed ID: 22732886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and pharmacological evaluation of pentacyclic 6a,7-dihydrodiindole and 2,3-dihydrodiindole derivatives as novel melatoninergic ligands.
    Attia MI; Witt-Enderby PA; Julius J
    Bioorg Med Chem; 2008 Aug; 16(16):7654-61. PubMed ID: 18657980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and pharmacological evaluation of 1,2,3,4-tetrahydropyrazino[1,2-a]indole and 2-[(phenylmethylamino)methyl]-1H-indole analogues as novel melatoninergic ligands.
    Markl C; Attia MI; Julius J; Sethi S; Witt-Enderby PA; Zlotos DP
    Bioorg Med Chem; 2009 Jul; 17(13):4583-94. PubMed ID: 19473848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Melatonergic ligands: Design, synthesis and pharmacological evaluation of novel series of naphthofuranic derivatives.
    Landagaray E; Ettaoussi M; Duroux R; Boutin JA; Caignard DH; Delagrange P; Melnyk P; Berthelot P; Yous S
    Eur J Med Chem; 2016 Feb; 109():360-70. PubMed ID: 26820449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of Keap1-Nrf2 small-molecule inhibitors from phytochemicals based on molecular docking.
    Li M; Huang W; Jie F; Wang M; Zhong Y; Chen Q; Lu B
    Food Chem Toxicol; 2019 Nov; 133():110758. PubMed ID: 31412289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Melatonin receptor activation provides cerebral protection after traumatic brain injury by mitigating oxidative stress and inflammation via the Nrf2 signaling pathway.
    Wang J; Jiang C; Zhang K; Lan X; Chen X; Zang W; Wang Z; Guan F; Zhu C; Yang X; Lu H; Wang J
    Free Radic Biol Med; 2019 Feb; 131():345-355. PubMed ID: 30553970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of 2-arylfuro[3,2-b]pyridines: Effect of the C2-aryl group on melatoninergic activity.
    Couhert A; Delagrange P; Caignard DH; Chartier A; Suzenet F; Guillaumet G
    Eur J Med Chem; 2016 Feb; 109():268-75. PubMed ID: 26785296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2-Arylmelatonin analogues: Probing the 2-phenyl binding pocket of melatonin MT
    Mari M; Elisi GM; Bedini A; Lucarini S; Retini M; Lucini V; Scaglione F; Vincenzi F; Varani K; Castelli R; Mor M; Rivara S; Spadoni G
    Eur J Med Chem; 2022 Dec; 243():114762. PubMed ID: 36150258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. XFEL structures of the human MT
    Johansson LC; Stauch B; McCorvy JD; Han GW; Patel N; Huang XP; Batyuk A; Gati C; Slocum ST; Li C; Grandner JM; Hao S; Olsen RHJ; Tribo AR; Zaare S; Zhu L; Zatsepin NA; Weierstall U; Yous S; Stevens RC; Liu W; Roth BL; Katritch V; Cherezov V
    Nature; 2019 May; 569(7755):289-292. PubMed ID: 31019305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N-Acetyl-5-arylalkoxytryptamine analogs: probing the melatonin receptors for MT(1) -selectivity.
    Markl C; Clafshenkel WP; Attia MI; Sethi S; Witt-Enderby PA; Zlotos DP
    Arch Pharm (Weinheim); 2011 Oct; 344(10):666-74. PubMed ID: 21887801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular recognition between potential natural inhibitors of the Keap1-Nrf2 complex.
    Bello M; Morales-González JA
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):981-992. PubMed ID: 28746889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, NMR conformational analysis and pharmacological evaluation of 7,7a,13,14-tetrahydro-6H-cyclobuta[b]pyrimido[1,2-a:3,4-a']diindole analogues as melatonin receptor ligands.
    Attia MI; Güclü D; Hertlein B; Julius J; Witt-Enderby PA; Zlotos DP
    Org Biomol Chem; 2007 Jul; 5(13):2129-37. PubMed ID: 17581657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Replacement of a Naphthalene Scaffold in Kelch-like ECH-Associated Protein 1 (KEAP1)/Nuclear Factor (Erythroid-derived 2)-like 2 (NRF2) Inhibitors.
    Richardson BG; Jain AD; Potteti HR; Lazzara PR; David BP; Tamatam CR; Choma E; Skowron K; Dye K; Siddiqui Z; Wang YT; Krunic A; Reddy SP; Moore TW
    J Med Chem; 2018 Sep; 61(17):8029-8047. PubMed ID: 30122040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design, synthesis, and pharmacological effects of structurally simple ligands for MT(1) and MT(2) melatonin receptors.
    Carocci A; Catalano A; Lovece A; Lentini G; Duranti A; Lucini V; Pannacci M; Scaglione F; Franchini C
    Bioorg Med Chem; 2010 Sep; 18(17):6496-511. PubMed ID: 20674373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of novel indole derivatives acting as inhibitors of the Keap1-Nrf2 interaction.
    Cosimelli B; Greco G; Laneri S; Novellino E; Sacchi A; Amendola G; Cosconati S; Bortolozzi R; Viola G
    J Enzyme Inhib Med Chem; 2019 Dec; 34(1):1152-1157. PubMed ID: 31179771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel N-Acetyl Bioisosteres of Melatonin: Melatonergic Receptor Pharmacology, Physicochemical Studies, and Phenotypic Assessment of Their Neurogenic Potential.
    de la Fuente Revenga M; Fernández-Sáez N; Herrera-Arozamena C; Morales-García JA; Alonso-Gil S; Pérez-Castillo A; Caignard DH; Rivara S; Rodríguez-Franco MI
    J Med Chem; 2015 Jun; 58(12):4998-5014. PubMed ID: 26023814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New melatonin (MT1/MT2) ligands: design and synthesis of (8,9-dihydro-7H-furo[3,2-f]chromen-1-yl) derivatives.
    Landagaray E; Ettaoussi M; Leclerc V; Traoré B; Perez V; Nosjean O; Boutin JA; Caignard DH; Delagrange P; Berthelot P; Yous S
    Bioorg Med Chem; 2014 Feb; 22(3):986-96. PubMed ID: 24417958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.