These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 32018097)

  • 1. Seasonal operation of dual-mode biofilters: The influence of plant species on stormwater and greywater treatment.
    Barron NJ; Hatt B; Jung J; Chen Y; Deletic A
    Sci Total Environ; 2020 May; 715():136680. PubMed ID: 32018097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-mode stormwater-greywater biofilters: The impact of alternating water sources on treatment performance.
    Barron NJ; Deletic A; Jung J; Fowdar H; Chen Y; Hatt BE
    Water Res; 2019 Aug; 159():521-537. PubMed ID: 31132624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-optimisation of phosphorus and nitrogen removal in stormwater biofilters: the role of filter media, vegetation and saturated zone.
    Glaister BJ; Fletcher TD; Cook PL; Hatt BE
    Water Sci Technol; 2014; 69(9):1961-9. PubMed ID: 24804674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of intermittent drying and wetting stormwater cycles on the nutrient removal performances of two vegetated biofiltration designs.
    Zinger Y; Prodanovic V; Zhang K; Fletcher TD; Deletic A
    Chemosphere; 2021 Mar; 267():129294. PubMed ID: 33352362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Salt tolerant plants increase nitrogen removal from biofiltration systems affected by saline stormwater.
    Szota C; Farrell C; Livesley SJ; Fletcher TD
    Water Res; 2015 Oct; 83():195-204. PubMed ID: 26150068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing living walls for greywater treatment.
    Fowdar HS; Hatt BE; Breen P; Cook PLM; Deletic A
    Water Res; 2017 Mar; 110():218-232. PubMed ID: 28011362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nutrient and sediment removal by stormwater biofilters: a large-scale design optimisation study.
    Bratieres K; Fletcher TD; Deletic A; Zinger Y
    Water Res; 2008 Aug; 42(14):3930-40. PubMed ID: 18710778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorus Fate and Dynamics in Greywater Biofiltration Systems.
    Fowdar HS; Hatt BE; Cresswell T; Harrison JJ; Cook PL; Deletic A
    Environ Sci Technol; 2017 Feb; 51(4):2280-2287. PubMed ID: 28068476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of stormwater biofilter design and operational variables on nutrient removal - a statistical modelling approach.
    Zhang K; Liu Y; Deletic A; McCarthy DT; Hatt BE; Payne EGI; Chandrasena G; Li Y; Pham T; Jamali B; Daly E; Fletcher TD; Lintern A
    Water Res; 2021 Jan; 188():116486. PubMed ID: 33080456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do mycorrhizae increase plant growth and pollutant removal in stormwater biofilters?
    Palacios YM; Gleadow R; Davidson C; Gan W; Winfrey B
    Water Res; 2021 Sep; 202():117381. PubMed ID: 34233250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance evaluation of modified bioretention systems with alkaline solid wastes for enhanced nutrient removal from stormwater runoff.
    You Z; Zhang L; Pan SY; Chiang PC; Pei S; Zhang S
    Water Res; 2019 Sep; 161():61-73. PubMed ID: 31176885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation and uncertainty analysis of a stormwater biofilter treatment model for faecal microorganisms.
    Shen P; McCarthy DT; Chandrasena GI; Li Y; Deletic A
    Sci Total Environ; 2020 Mar; 709():136157. PubMed ID: 31927430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surrogates for herbicide removal in stormwater biofilters.
    Zhang K; Deletic A; Page D; McCarthy DT
    Water Res; 2015 Sep; 81():64-71. PubMed ID: 26043372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real time control of biofilters delivers stormwater suitable for harvesting and reuse.
    Shen P; Deletic A; Bratieres K; McCarthy DT
    Water Res; 2020 Feb; 169():115257. PubMed ID: 31726396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biofilter design for effective nitrogen removal from stormwater - influence of plant species, inflow hydrology and use of a saturated zone.
    Payne EG; Pham T; Cook PL; Fletcher TD; Hatt BE; Deletic A
    Water Sci Technol; 2014; 69(6):1312-9. PubMed ID: 24647199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inside Story of Gas Processes within Stormwater Biofilters: Does Greenhouse Gas Production Tarnish the Benefits of Nitrogen Removal?
    Payne EG; Pham T; Cook PL; Deletic A; Hatt BE; Fletcher TD
    Environ Sci Technol; 2017 Apr; 51(7):3703-3713. PubMed ID: 28272882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating Escherichia coli removal performance in stormwater biofilters: a preliminary modelling approach.
    Chandrasena GI; Deletic A; McCarthy DT
    Water Sci Technol; 2013; 67(11):2467-75. PubMed ID: 23752378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of intermittent wetting and drying conditions on heavy metal removal by stormwater biofilters.
    Blecken GT; Zinger Y; Deletić A; Fletcher TD; Viklander M
    Water Res; 2009 Oct; 43(18):4590-8. PubMed ID: 19683781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential of bioretention plants in treating urban runoff polluted with greywater under tropical climate.
    Jhonson P; Goh HW; Chan DJC; Juiani SF; Zakaria NA
    Environ Sci Pollut Res Int; 2023 Feb; 30(9):24562-24574. PubMed ID: 36336739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporary storage or permanent removal? The division of nitrogen between biotic assimilation and denitrification in stormwater biofiltration systems.
    Payne EG; Fletcher TD; Russell DG; Grace MR; Cavagnaro TR; Evrard V; Deletic A; Hatt BE; Cook PL
    PLoS One; 2014; 9(3):e90890. PubMed ID: 24670377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.