These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 32018137)
21. Expression of Helicobacter pylori urease B on the surface of Bacillus subtilis spores. Zhou Z; Gong S; Li XM; Yang Y; Guan R; Zhou S; Yao S; Xie Y; Ou Z; Zhao J; Liu Z J Med Microbiol; 2015 Jan; 64(Pt 1):104-110. PubMed ID: 25355934 [TBL] [Abstract][Full Text] [Related]
22. [Free and hydrolysate amino acids in vegetative cells & spores of Bacillus subtilis]. PFENNIG N Arch Mikrobiol; 1957; 26(4):345-52. PubMed ID: 13435801 [No Abstract] [Full Text] [Related]
23. Studies on the control of development. Synthesis of two highly phosphorylated nucleotides depends on changes in the composition of ribosomes at the beginning of sporulation in Bacillus subtilis. Rhaese HJ; Groscurth R Eur J Biochem; 1978 Apr; 85(2):517-28. PubMed ID: 417920 [No Abstract] [Full Text] [Related]
24. Localization of SpoVAD to the inner membrane of spores of Bacillus subtilis. Vepachedu VR; Setlow P J Bacteriol; 2005 Aug; 187(16):5677-82. PubMed ID: 16077113 [TBL] [Abstract][Full Text] [Related]
25. [Effect of nalidixic acid on the activation of RNA synthesis in outgrowing spores of Bacillus subtilis]. Hecker M Z Allg Mikrobiol; 1982; 22(8):529-34. PubMed ID: 6187135 [TBL] [Abstract][Full Text] [Related]
26. Transcription from complementary deoxyribonucleic acid strands in various sporogenic and asporogenic mutants of Bacillus subtilis. Hybridization-competition studies on ribonucleic acid synthesized in vivo by a thermosensitive sporulation mutant (ts-4). Bonamy C; Manca de Nadra MC; Szulmajster J Eur J Biochem; 1976 Mar; 63(1):53-63. PubMed ID: 816651 [TBL] [Abstract][Full Text] [Related]
27. Efficient binding of nickel ions to recombinant Bacillus subtilis spores. Hinc K; Ghandili S; Karbalaee G; Shali A; Noghabi KA; Ricca E; Ahmadian G Res Microbiol; 2010 Nov; 161(9):757-64. PubMed ID: 20863881 [TBL] [Abstract][Full Text] [Related]
28. Monitoring the kinetics of uptake of a nucleic acid dye during the germination of single spores of Bacillus species. Kong L; Zhang P; Yu J; Setlow P; Li YQ Anal Chem; 2010 Oct; 82(20):8717-24. PubMed ID: 20873796 [TBL] [Abstract][Full Text] [Related]
29. Filtration of Bacillus subtilis and Bacillus cereus spores in a pyroclastic topsoil, carbonate Apennines, southern Italy. Naclerio G; Fardella G; Marzullo G; Celico F Colloids Surf B Biointerfaces; 2009 Apr; 70(1):25-8. PubMed ID: 19155162 [TBL] [Abstract][Full Text] [Related]
30. Proteomics and microscopy tools for the study of antimicrobial resistance and germination mechanisms of bacterial spores. Abhyankar WR; Wen J; Swarge BN; Tu Z; de Boer R; Smelt JPPM; de Koning LJ; Manders E; de Koster CG; Brul S Food Microbiol; 2019 Aug; 81():89-96. PubMed ID: 30910091 [TBL] [Abstract][Full Text] [Related]
31. Permeability of gentamicin and polymyxin B into the inside of Bacillus subtilis spores. Fujita Y; Yasuda Y; Tochikubo K Microbiol Immunol; 1990; 34(12):1013-23. PubMed ID: 2129132 [TBL] [Abstract][Full Text] [Related]
32. Mechanism of the hydrolysis of 4-methylumbelliferyl-beta-D-glucoside by germinating and outgrowing spores of Bacillus species. Setlow B; Cabrera-Martinez RM; Setlow P J Appl Microbiol; 2004; 96(6):1245-55. PubMed ID: 15139916 [TBL] [Abstract][Full Text] [Related]
33. Towards a comprehensive understanding of Bacillus subtilis cell physiology by physiological proteomics. Hecker M; Völker U Proteomics; 2004 Dec; 4(12):3727-50. PubMed ID: 15540212 [TBL] [Abstract][Full Text] [Related]
34. Structural and germination defects of Bacillus subtilis spores with altered contents of a spore coat protein. Bourne N; FitzJames PC; Aronson AI J Bacteriol; 1991 Oct; 173(20):6618-25. PubMed ID: 1917883 [TBL] [Abstract][Full Text] [Related]
35. The effect of transition metal ions on the resistance of bacterial spores to hydrogen peroxide and to heat. Waites WM; Bayliss CE; King NR; Davies AM J Gen Microbiol; 1979 Jun; 112(2):225-33. PubMed ID: 113488 [TBL] [Abstract][Full Text] [Related]
37. Inactivation effects of combined thermosonication and potassium sorbate treatments on Li J; Zhang Z; Li Q; Liu Y; Liu Y Food Sci Biotechnol; 2024 Nov; 33(14):3357-3366. PubMed ID: 39328230 [TBL] [Abstract][Full Text] [Related]
38. Germination, Outgrowth, and Vegetative-Growth Kinetics of Dry-Heat-Treated Individual Spores of Bacillus Species. He L; Chen Z; Wang S; Wu M; Setlow P; Li YQ Appl Environ Microbiol; 2018 Apr; 84(7):. PubMed ID: 29330188 [TBL] [Abstract][Full Text] [Related]
39. Proteins and dipicolinic acid released during heat shock activation of Bacillus subtilis spores probed by optical spectroscopy. Alimova A; Katz A; Gottlieb P; Alfano RR Appl Opt; 2006 Jan; 45(3):445-50. PubMed ID: 16463727 [TBL] [Abstract][Full Text] [Related]
40. Proteolytic processing of the protease which initiates degradation of small, acid-soluble proteins during germination of Bacillus subtilis spores. Sanchez-Salas JL; Setlow P J Bacteriol; 1993 May; 175(9):2568-77. PubMed ID: 8478323 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]