BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 3201825)

  • 1. Association of African swine fever virus with the cytoskeleton.
    Carvalho ZG; De Matos AP; Rodrigues-Pousada C
    Virus Res; 1988 Sep; 11(2):175-92. PubMed ID: 3201825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. African swine fever virus interaction with microtubules.
    de Matos AP; Carvalho ZG
    Biol Cell; 1993; 78(3):229-34. PubMed ID: 8241964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Association of bluetongue virus with the cytoskeleton.
    Eaton BT; Hyatt AD; White JR
    Virology; 1987 Mar; 157(1):107-16. PubMed ID: 3029951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of frog virus-3 with the cytoskeleton. I. Altered organization of microtubules, intermediate filaments, and microfilaments.
    Murti KG; Goorha R
    J Cell Biol; 1983 May; 96(5):1248-57. PubMed ID: 6341377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro inhibition of African swine fever virus-topoisomerase II disrupts viral replication.
    Freitas FB; Frouco G; Martins C; Leitão A; Ferreira F
    Antiviral Res; 2016 Oct; 134():34-41. PubMed ID: 27568922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA-Binding Properties of African Swine Fever Virus pA104R, a Histone-Like Protein Involved in Viral Replication and Transcription.
    Frouco G; Freitas FB; Coelho J; Leitão A; Martins C; Ferreira F
    J Virol; 2017 Jun; 91(12):. PubMed ID: 28381576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. African swine fever virus infection disrupts centrosome assembly and function.
    Jouvenet N; Wileman T
    J Gen Virol; 2005 Mar; 86(Pt 3):589-594. PubMed ID: 15722518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of frog virus 3 with the cytomatrix. IV. Phosphorylation of vimentin precedes the reorganization of intermediate filaments around the virus assembly sites.
    Chen M; Goorha R; Murti KG
    J Gen Virol; 1986 May; 67 ( Pt 5)():915-22. PubMed ID: 3517225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early intranuclear replication of African swine fever virus genome modifies the landscape of the host cell nucleus.
    Simões M; Martins C; Ferreira F
    Virus Res; 2015 Dec; 210():1-7. PubMed ID: 26183880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unpicking the Secrets of African Swine Fever Viral Replication Sites.
    Aicher SM; Monaghan P; Netherton CL; Hawes PC
    Viruses; 2021 Jan; 13(1):. PubMed ID: 33429879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of African swine fever virus from assembly sites to the plasma membrane is dependent on microtubules and conventional kinesin.
    Jouvenet N; Monaghan P; Way M; Wileman T
    J Virol; 2004 Aug; 78(15):7990-8001. PubMed ID: 15254171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vimentin rearrangement during African swine fever virus infection involves retrograde transport along microtubules and phosphorylation of vimentin by calcium calmodulin kinase II.
    Stefanovic S; Windsor M; Nagata KI; Inagaki M; Wileman T
    J Virol; 2005 Sep; 79(18):11766-75. PubMed ID: 16140754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new microtubule-stabilizing agent shows potent antiviral effects against African swine fever virus with no cytotoxicity.
    Sirakanyan S; Arabyan E; Hakobyan A; Hakobyan T; Chilingaryan G; Sahakyan H; Sargsyan A; Arakelov G; Nazaryan K; Izmailyan R; Abroyan L; Karalyan Z; Arakelova E; Hakobyan E; Hovakimyan A; Serobian A; Neves M; Ferreira J; Ferreira F; Zakaryan H
    Emerg Microbes Infect; 2021 Dec; 10(1):783-796. PubMed ID: 33706677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Apigenin inhibits African swine fever virus infection in vitro.
    Hakobyan A; Arabyan E; Avetisyan A; Abroyan L; Hakobyan L; Zakaryan H
    Arch Virol; 2016 Dec; 161(12):3445-3453. PubMed ID: 27638776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A functional role for intermediate filaments in the formation of frog virus 3 assembly sites.
    Murti KG; Goorha R; Klymkowsky MW
    Virology; 1988 Jan; 162(1):264-9. PubMed ID: 2892313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Entry of African swine fever virus into Vero cells and uncoating.
    Valdeira ML; Bernardes C; Cruz B; Geraldes A
    Vet Microbiol; 1998 Feb; 60(2-4):131-40. PubMed ID: 9646445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redistribution of Endosomal Membranes to the African Swine Fever Virus Replication Site.
    Cuesta-Geijo MÁ; Barrado-Gil L; Galindo I; Muñoz-Moreno R; Alonso C
    Viruses; 2017 Jun; 9(6):. PubMed ID: 28587154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro and in vivo association of African swine fever virus with swine erythrocytes.
    Quintero JC; Wesley RD; Whyard TC; Gregg D; Mebus CA
    Am J Vet Res; 1986 May; 47(5):1125-31. PubMed ID: 3521406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular virus DNA distribution and the acquisition of the nucleoprotein core during African swine fever virus particle assembly: ultrastructural in situ hybridisation and DNase-gold labelling.
    Brookes SM; Hyatt AD; Wise T; Parkhouse RM
    Virology; 1998 Sep; 249(1):175-88. PubMed ID: 9740789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of chloroquine on African swine fever virus infection.
    Geraldes A; Valdeira ML
    J Gen Virol; 1985 May; 66 ( Pt 5)():1145-8. PubMed ID: 3998709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.