BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 32019013)

  • 1. Submarine groundwater discharge as a source of pharmaceutical and caffeine residues in coastal ecosystem: Bay of Puck, southern Baltic Sea case study.
    Szymczycha B; Borecka M; Białk-Bielińska A; Siedlewicz G; Pazdro K
    Sci Total Environ; 2020 Apr; 713():136522. PubMed ID: 32019013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nutrient fluxes via submarine groundwater discharge to the Bay of Puck, southern Baltic Sea.
    Szymczycha B; Vogler S; Pempkowiak J
    Sci Total Environ; 2012 Nov; 438():86-93. PubMed ID: 22975306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating the input of submarine groundwater discharge (SGD) and SGD-derived nutrients in Geoje Bay, Korea using (222)Rn-Si mass balance model.
    Hwang DW; Lee IS; Choi M; Kim TH
    Mar Pollut Bull; 2016 Sep; 110(1):119-126. PubMed ID: 27377001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Significance of submarine groundwater discharge in the coastal fluxes of mercury in Hampyeong Bay, Yellow Sea.
    Rahman MM; Lee YG; Kim G; Lee K; Han S
    Chemosphere; 2013 Apr; 91(3):320-7. PubMed ID: 23276461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Submarine groundwater discharge: A previously undocumented source of contaminants of emerging concern to the coastal ocean (Sydney, Australia).
    McKenzie T; Holloway C; Dulai H; Tucker JP; Sugimoto R; Nakajima T; Harada K; Santos IR
    Mar Pollut Bull; 2020 Nov; 160():111519. PubMed ID: 32781267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Significance of groundwater discharge along the coast of Poland as a source of dissolved metals to the southern Baltic Sea.
    Szymczycha B; Kroeger KD; Pempkowiak J
    Mar Pollut Bull; 2016 Aug; 109(1):151-162. PubMed ID: 27293076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Submarine groundwater discharge as sources for dissolved nutrient fluxes in Coleroon river estuary, Bay of Bengal, India.
    Prakash R; Srinivasamoorthy K; Gopinath S; Saravanan K
    J Contam Hydrol; 2020 Aug; 233():103660. PubMed ID: 32480099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Submarine groundwater discharge and associated metal elements into an urbanized bay.
    Xue Y; Zhang Y; Zhang M; Wang X; Xiao K; Luo M; Li H
    Mar Pollut Bull; 2023 Jul; 192():115092. PubMed ID: 37285609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Submarine Groundwater Discharge as a Source of Mercury in the Bay of Puck, the Southern Baltic Sea.
    Szymczycha B; Miotk M; Pempkowiak J
    Water Air Soil Pollut; 2013 Jun; 224(6):1542. PubMed ID: 23794765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pockmarks and associated fresh submarine groundwater discharge in the seafloor of Puck Bay, southern Baltic Sea.
    Matciak M; Misiewicz MM; Szymczycha B; Idczak J; Tęgowski J; Diak M
    Sci Total Environ; 2024 Sep; 942():173617. PubMed ID: 38815837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation, effect and utilization of submarine groundwater discharge for coastal population and ecosystem: A special emphasis on Indian coastline.
    Babu DSS; Khandekar A; Bhagat C; Singh A; Jain V; Verma M; Bansal BK; Kumar M
    J Environ Manage; 2021 Jan; 277():111362. PubMed ID: 32949950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using 222Rn to estimate submarine groundwater discharge (SGD) and the associated nutrient fluxes into Xiangshan Bay, East China Sea.
    Wu Z; Zhou H; Zhang S; Liu Y
    Mar Pollut Bull; 2013 Aug; 73(1):183-91. PubMed ID: 23790526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geochemical ratios mediated understanding of estuarine dynamics in submarine groundwater discharge prevalent basaltic aquifer.
    Misra A; Bhagat C; Kumar M
    Mar Pollut Bull; 2022 Aug; 181():113812. PubMed ID: 35749978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of submarine groundwater discharge on nutrient distribution and eutrophication in Liaodong Bay, China.
    Luo M; Zhang Y; Xiao K; Wang X; Zhang X; Li G; Li H
    Water Res; 2023 Dec; 247():120732. PubMed ID: 37948905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluations of submarine groundwater discharge and associated heavy metal fluxes in Bohai Bay, China.
    Wang Q; Li H; Zhang Y; Wang X; Zhang C; Xiao K; Qu W
    Sci Total Environ; 2019 Dec; 695():133873. PubMed ID: 31422319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial community composition across a coastal hydrological system affected by submarine groundwater discharge (SGD).
    Adyasari D; Hassenrück C; Montiel D; Dimova N
    PLoS One; 2020; 15(6):e0235235. PubMed ID: 32598345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nutrient inputs from submarine groundwater discharge (SGD) in Masan Bay, an embayment surrounded by heavily industrialized cities, Korea.
    Lee YW; Hwang DW; Kim G; Lee WC; Oh HT
    Sci Total Environ; 2009 Apr; 407(9):3181-8. PubMed ID: 18538821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fresh and saline groundwater nutrient inputs and their impacts on the nutrient budgets in a human-effected bay.
    Yu X; Liu J; Chen X; Yu H; Du J
    Mar Pollut Bull; 2024 Feb; 199():116026. PubMed ID: 38211541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Submarine groundwater discharge-driven nutrient fluxes in a typical mangrove and aquaculture bay of the Beibu Gulf, China.
    Wang X; Su K; Chen X; Li L; Du J; Lao Y; Ning G; Bin L
    Mar Pollut Bull; 2021 Jul; 168():112500. PubMed ID: 34023649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Submarine groundwater discharge: An Asian overview.
    Sajeev S; Muthukumar P; Selvam S
    Chemosphere; 2023 Jun; 325():138261. PubMed ID: 36898441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.