These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1478 related articles for article (PubMed ID: 32019020)
1. Waste-to-energy nexus for circular economy and environmental protection: Recent trends in hydrogen energy. Sharma S; Basu S; Shetti NP; Aminabhavi TM Sci Total Environ; 2020 Apr; 713():136633. PubMed ID: 32019020 [TBL] [Abstract][Full Text] [Related]
2. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
3. Biohydrogen, biomethane and bioelectricity as crucial components of biorefinery of organic wastes: a review. Poggi-Varaldo HM; Munoz-Paez KM; Escamilla-Alvarado C; Robledo-Narváez PN; Ponce-Noyola MT; Calva-Calva G; Ríos-Leal E; Galíndez-Mayer J; Estrada-Vázquez C; Ortega-Clemente A; Rinderknecht-Seijas NF Waste Manag Res; 2014 May; 32(5):353-65. PubMed ID: 24742981 [TBL] [Abstract][Full Text] [Related]
4. Biohydrogen production from dairy manures with acidification pretreatment by anaerobic fermentation. Xing Y; Li Z; Fan Y; Hou H Environ Sci Pollut Res Int; 2010 Feb; 17(2):392-9. PubMed ID: 19499259 [TBL] [Abstract][Full Text] [Related]
5. Molecular biohydrogen production by dark and photo fermentation from wastes containing starch: recent advancement and future perspective. Das SR; Basak N Bioprocess Biosyst Eng; 2021 Jan; 44(1):1-25. PubMed ID: 32785789 [TBL] [Abstract][Full Text] [Related]
6. Single-stage photofermentative biohydrogen production from sugar beet molasses by different purple non-sulfur bacteria. Sagir E; Ozgur E; Gunduz U; Eroglu I; Yucel M Bioprocess Biosyst Eng; 2017 Nov; 40(11):1589-1601. PubMed ID: 28730325 [TBL] [Abstract][Full Text] [Related]
7. Utilization of distillery wastewater for hydrogen production in one-stage and two-stage processes involving photofermentation. Laurinavichene T; Tekucheva D; Laurinavichius K; Tsygankov A Enzyme Microb Technol; 2018 Mar; 110():1-7. PubMed ID: 29310850 [TBL] [Abstract][Full Text] [Related]
8. Fermentative hydrogen production from low-value substrates. Hassan AHS; Mietzel T; Brunstermann R; Schmuck S; Schoth J; Küppers M; Widmann R World J Microbiol Biotechnol; 2018 Nov; 34(12):176. PubMed ID: 30446833 [TBL] [Abstract][Full Text] [Related]
9. Whey and molasses as inexpensive raw materials for parallel production of biohydrogen and polyesters via a two-stage bioprocess: New routes towards a circular bioeconomy. Carlozzi P; Touloupakis E; Di Lorenzo T; Giovannelli A; Seggiani M; Cinelli P; Lazzeri A J Biotechnol; 2019 Sep; 303():37-45. PubMed ID: 31351109 [TBL] [Abstract][Full Text] [Related]
10. Introducing capnophilic lactic fermentation in a combined dark-photo fermentation process: a route to unparalleled H2 yields. Dipasquale L; Adessi A; d'Ippolito G; Rossi F; Fontana A; De Philippis R Appl Microbiol Biotechnol; 2015 Jan; 99(2):1001-10. PubMed ID: 25467925 [TBL] [Abstract][Full Text] [Related]
11. Development of novel strategies for higher fermentative biohydrogen recovery along with novel metabolites from organic wastes: The present state of the art. Rao R; Basak N Biotechnol Appl Biochem; 2021 Jun; 68(3):421-444. PubMed ID: 32474946 [TBL] [Abstract][Full Text] [Related]
12. Sustainable biohydrogen production from lignocellulosic biomass sources - metabolic pathways, production enhancement, and challenges. Chandran EM; Mohan E Environ Sci Pollut Res Int; 2023 Oct; 30(46):102129-102157. PubMed ID: 37684507 [TBL] [Abstract][Full Text] [Related]
13. Renewable biohydrogen production from lignocellulosic biomass using fermentation and integration of systems with other energy generation technologies. Bhatia SK; Jagtap SS; Bedekar AA; Bhatia RK; Rajendran K; Pugazhendhi A; Rao CV; Atabani AE; Kumar G; Yang YH Sci Total Environ; 2021 Apr; 765():144429. PubMed ID: 33385808 [TBL] [Abstract][Full Text] [Related]
14. Palm oil industrial wastes as a promising feedstock for biohydrogen production: A comprehensive review. Ong ES; Rabbani AH; Habashy MM; Abdeldayem OM; Al-Sakkari EG; Rene ER Environ Pollut; 2021 Dec; 291():118160. PubMed ID: 34562690 [TBL] [Abstract][Full Text] [Related]
15. Bioconversion of industrial wastes to hydrogen: A review on waste-to-wealth technologies. Sahu S; Sharma A; Kaushal J; Singh G; Arya SK Environ Sci Pollut Res Int; 2024 Aug; ():. PubMed ID: 39107649 [TBL] [Abstract][Full Text] [Related]
16. Biohydrogen production from food waste: Current status, limitations, and future perspectives. Yun YM; Lee MK; Im SW; Marone A; Trably E; Shin SR; Kim MG; Cho SK; Kim DH Bioresour Technol; 2018 Jan; 248(Pt A):79-87. PubMed ID: 28684176 [TBL] [Abstract][Full Text] [Related]
17. Biohythane production from organic wastes: present state of art. Roy S; Das D Environ Sci Pollut Res Int; 2016 May; 23(10):9391-410. PubMed ID: 26507735 [TBL] [Abstract][Full Text] [Related]
18. Dark fermentative hydrogen production: Potential of food waste as future energy needs. Mohanakrishna G; Sneha NP; Rafi SM; Sarkar O Sci Total Environ; 2023 Aug; 888():163801. PubMed ID: 37127164 [TBL] [Abstract][Full Text] [Related]
19. The role of pH control on biohydrogen production by single stage hybrid dark- and photo-fermentation. Zagrodnik R; Laniecki M Bioresour Technol; 2015 Oct; 194():187-95. PubMed ID: 26196419 [TBL] [Abstract][Full Text] [Related]