These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 32019175)

  • 1. Engineering Prostate Cancer from Induced Pluripotent Stem Cells-New Opportunities to Develop Preclinical Tools in Prostate and Prostate Cancer Studies.
    Hepburn AC; Sims CHC; Buskin A; Heer R
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 32019175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel model of urinary tract differentiation, tissue regeneration, and disease: reprogramming human prostate and bladder cells into induced pluripotent stem cells.
    Moad M; Pal D; Hepburn AC; Williamson SC; Wilson L; Lako M; Armstrong L; Hayward SW; Franco OE; Cates JM; Fordham SE; Przyborski S; Carr-Wilkinson J; Robson CN; Heer R
    Eur Urol; 2013 Nov; 64(5):753-61. PubMed ID: 23582880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D brain Organoids derived from pluripotent stem cells: promising experimental models for brain development and neurodegenerative disorders.
    Lee CT; Bendriem RM; Wu WW; Shen RF
    J Biomed Sci; 2017 Aug; 24(1):59. PubMed ID: 28822354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patient-derived induced pluripotent stem cells in cancer research and precision oncology.
    Papapetrou EP
    Nat Med; 2016 Dec; 22(12):1392-1401. PubMed ID: 27923030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Review of Prostate Organogenesis and a Role for iPSC-Derived Prostate Organoids to Study Prostate Development and Disease.
    Buskin A; Singh P; Lorenz O; Robson C; Strand DW; Heer R
    Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From Neuronal Differentiation of iPSCs to 3D Neuro-Organoids: Modelling and Therapy of Neurodegenerative Diseases.
    Bordoni M; Rey F; Fantini V; Pansarasa O; Di Giulio AM; Carelli S; Cereda C
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30544711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of conditional reprogramming cell, patient derived xenograft and organoid for drug screening for individualized prostate cancer therapy: Current and future perspectives (Review).
    Cao J; Chan WC; Chow MSS
    Int J Oncol; 2022 May; 60(5):. PubMed ID: 35322860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reprogramming Prostate Cancer Cells into Induced Pluripotent Stem Cells: a Promising Model of Prostate Cancer Stem Cell Research.
    Zhang Y; Chen B; Xu P; Liu C; Huang P
    Cell Reprogram; 2020 Oct; 22(5):262-268. PubMed ID: 32816532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organoids: Avatars for Personalized Medicine.
    Clevers HC
    Keio J Med; 2019; 68(4):95. PubMed ID: 31875622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct Generation of Human Cortical Organoids from Primary Cells.
    Schukking M; Miranda HC; Trujillo CA; Negraes PD; Muotri AR
    Stem Cells Dev; 2018 Nov; 27(22):1549-1556. PubMed ID: 30142987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of expandable human pluripotent stem cell-derived hepatocyte-like liver organoids.
    Mun SJ; Ryu JS; Lee MO; Son YS; Oh SJ; Cho HS; Son MY; Kim DS; Kim SJ; Yoo HJ; Lee HJ; Kim J; Jung CR; Chung KS; Son MJ
    J Hepatol; 2019 Nov; 71(5):970-985. PubMed ID: 31299272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Obstacles in Renal Regenerative Medicine: Metabolic and Epigenetic Parallels Between Cellular Reprogramming and Kidney Cancer Oncogenesis.
    Lichner Z; Mac-Way F; Yousef GM
    Eur Urol Focus; 2019 Mar; 5(2):250-261. PubMed ID: 28847686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentiation of human airway-organoids from induced pluripotent stem cells (iPSCs).
    Wang R; McCauley KB; Kotton DN; Hawkins F
    Methods Cell Biol; 2020; 159():95-114. PubMed ID: 32586451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conditional Reprogramming for Patient-Derived Cancer Models and Next-Generation Living Biobanks.
    Palechor-Ceron N; Krawczyk E; Dakic A; Simic V; Yuan H; Blancato J; Wang W; Hubbard F; Zheng YL; Dan H; Strome S; Cullen K; Davidson B; Deeken JF; Choudhury S; Ahn PH; Agarwal S; Zhou X; Schlegel R; Furth PA; Pan CX; Liu X
    Cells; 2019 Oct; 8(11):. PubMed ID: 31717887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of 3D Whole Lung Organoids from Induced Pluripotent Stem Cells for Modeling Lung Developmental Biology and Disease.
    Leibel SL; McVicar RN; Winquist AM; Snyder EY
    J Vis Exp; 2021 Apr; (170):. PubMed ID: 33900299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating pediatric disorders with induced pluripotent stem cells.
    Durbin MD; Cadar AG; Chun YW; Hong CC
    Pediatr Res; 2018 Oct; 84(4):499-508. PubMed ID: 30065271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developing liver organoids from induced pluripotent stem cells (iPSCs): An alternative source of organoid generation for liver cancer research.
    Nguyen R; Da Won Bae S; Qiao L; George J
    Cancer Lett; 2021 Jun; 508():13-17. PubMed ID: 33771683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What gastroenterologists and hepatologists should know about organoids in 2019.
    Günther C; Brevini T; Sampaziotis F; Neurath MF
    Dig Liver Dis; 2019 Jun; 51(6):753-760. PubMed ID: 30948332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concise Review: Precision Matchmaking: Induced Pluripotent Stem Cells Meet Cardio-Oncology.
    Nair P; Prado M; Perea-Gil I; Karakikes I
    Stem Cells Transl Med; 2019 Aug; 8(8):758-767. PubMed ID: 31020786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organoids in domestic animals: with which stem cells?
    Pain B
    Vet Res; 2021 Mar; 52(1):38. PubMed ID: 33663614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.