These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 32019254)

  • 1. Time-Frequency Analysis of Barkhausen Noise for the Needs of Anisotropy Evaluation of Grain-Oriented Steels.
    Maciusowicz M; Psuj G
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32019254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of Time-Frequency Representation of Magnetic Barkhausen Noise for Evaluation of Easy Magnetization Axis of Grain-Oriented Steel.
    Maciusowicz M; Psuj G
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32751858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Grain Oriented SiFe Steels Based on Imaging the Instantaneous Dynamics of Magnetic Barkhausen Noise Using Short-Time Fourier Transform and Deep Convolutional Neural Network.
    Maciusowicz M; Psuj G; Kochmański P
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of Time-Dependent Multispectral Representation of Magnetic Barkhausen Noise Signals for the Needs of Non-Destructive Evaluation of Steel Materials.
    Maciusowicz M; Psuj G
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30909632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the Magnetocrystalline Anisotropy of Typical Materials Using MBN Technology.
    Wang L; He C; Liu X
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34064858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-Response-Histogram-Based Feature of Magnetic Barkhausen Noise for Material Characterization Considering Influences of Grain and Grain Boundary under In Situ Tensile Test.
    Liu J; Tian G; Gao B; Zeng K; Xu Y; Liu Q
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33800570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative Evaluation of the Effect of Temperature on Magnetic Barkhausen Noise.
    Wang Y; Meydan T; Melikhov Y
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33572791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative Prediction of Surface Hardness in Cr12MoV Steel and S136 Steel with Two Magnetic Barkhausen Noise Feature Extraction Methods.
    Wang X; Cai Y; Liu X; He C
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic Barkhausen Noise Transient Analysis for Microstructure Evolution Characterization with Tensile Stress in Elastic and Plastic Status.
    Liu J; Tian G; Gao B; Zeng K; Liu Q; Zheng Y
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Method for Detecting the Randomness of Barkhausen Noise in a Material Fatigue Test Using Sensitivity and Uncertainty Analysis.
    Hou Y; Li X; Zheng Y; Zhou J; Tan J; Chen X
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32962228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Magnetizing Conditions on Barkhausen Noise in Fe Soft Magnetic Materials after Thermo-Mechanical Treatment.
    Neslušan M; Zgútová K; Pitoňák M; Kajánek D
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Two-Domain Model Utilizing the Effective Pinning Energy for Modeling the Strain-Dependent Magnetic Permeability in Anisotropic Grain-Oriented Electrical Steels.
    Szumiata T; Rekas P; Gzik-Szumiata M; Nowicki M; Szewczyk R
    Materials (Basel); 2024 Jan; 17(2):. PubMed ID: 38255539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Ferromagnetic Steel Hardness Based on an Analysis of the Barkhausen Noise Number of Events.
    Roskosz M; Fryczowski K; Schabowicz K
    Materials (Basel); 2020 Apr; 13(9):. PubMed ID: 32365574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A System for Monitoring of Broadband FMR Phenomenon in Low-Carbon Steel Films Subjected to Deformations.
    Psuj G; Lopato P; Maciusowicz M; Herbko M
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34201856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic Measurement of Zn Layer Heterogeneity on the Flange of the Steel Road Barrier.
    Pitoňák M; Ondruš J; Minárik P; Kubjatko T; Neslušan M
    Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Process Parameters on Grain Size and Texture Evolution of Fe-3.2 wt.-% Si Non-Oriented Electrical Steels.
    Wei X; Krämer A; Hirt G; Stöcker A; Kawalla R; Heller M; Korte-Kerzel S; Böhm L; Volk W; Leuning N; Hameyer K; Lohmar J
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the Embrittlement in Reactor Pressure-Vessel Steels Using a Hybrid Nondestructive Electromagnetic Testing and Evaluation Approach.
    Vértesy G; Rabung M; Gasparics A; Uytdenhouwen I; Griffin J; Algernon D; Grönroos S; Rinta-Aho J
    Materials (Basel); 2024 Feb; 17(5):. PubMed ID: 38473578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Barkhausen Noise Emission in Hard-Milled Surfaces.
    Neslušan M; Mičietová A; Hadzima B; Mičieta B; Kejzlar P; Čapek J; Uríček J; Pastorek F
    Materials (Basel); 2019 Feb; 12(4):. PubMed ID: 30813252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermally affected characterization region by Barkhausen noise.
    Zergoug M; Boucherrou N; Haddad A; Benchaala A; Moulti B; Tahraoui H; Sellidj F; Hammouda A
    Ultrasonics; 2000 Jul; 37(10):703-7. PubMed ID: 10950355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EBSD study of angular deviations from the Goss component in grain-oriented electrical steels.
    Bernier N; Leunis E; Furtado C; Van De Putte T; Ban G
    Micron; 2013; 54-55():43-51. PubMed ID: 24090630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.