BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 32019471)

  • 1. Fluid and solute transport across the retinal pigment epithelium: a theoretical model.
    Dvoriashyna M; Foss AJE; Gaffney EA; Repetto R
    J R Soc Interface; 2020 Feb; 17(163):20190735. PubMed ID: 32019471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osmotic and electroosmotic fluid transport across the retinal pigment epithelium: A mathematical model.
    Dvoriashyna M; Foss AJE; Gaffney EA; Jensen OE; Repetto R
    J Theor Biol; 2018 Nov; 456():233-248. PubMed ID: 30096403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CO2-induced ion and fluid transport in human retinal pigment epithelium.
    Adijanto J; Banzon T; Jalickee S; Wang NS; Miller SS
    J Gen Physiol; 2009 Jun; 133(6):603-22. PubMed ID: 19468075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of membrane-bound carbonic anhydrase decreases subretinal pH and volume.
    Wolfensberger TJ; Dmitriev AV; Govardovskii VI
    Doc Ophthalmol; 1999; 97(3-4):261-71. PubMed ID: 10896339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbonic anhydrase activity is increased in retinal pigmented epithelium and choriocapillaris of RCS rats.
    Eichhorn M; Schreckenberger M; Tamm ER; Lütjen-Drecoll E
    Graefes Arch Clin Exp Ophthalmol; 1996 Apr; 234(4):258-63. PubMed ID: 8964532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active ion transport pathways in the bovine retinal pigment epithelium.
    Miller SS; Edelman JL
    J Physiol; 1990 May; 424():283-300. PubMed ID: 1697344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DPOFA, a Cl⁻/HCO₃⁻ exchanger antagonist, stimulates fluid absorption across basolateral surface of the retinal pigment epithelium.
    Iserovich P; Qin Q; Petrukhin K
    BMC Ophthalmol; 2011 Nov; 11():33. PubMed ID: 22085910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel system to measure labelled CO2 and HCO3- fluxes across epithelia: corneal epithelium as model tissue.
    Candia OA
    Exp Eye Res; 1996 Aug; 63(2):137-49. PubMed ID: 8983971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of membrane-bound carbonic anhydrase enhances subretinal fluid absorption and retinal adhesiveness.
    Wolfensberger TJ; Chiang RK; Takeuchi A; Marmor MF
    Graefes Arch Clin Exp Ophthalmol; 2000 Jan; 238(1):76-80. PubMed ID: 10664057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model for transepithelial ion transport across the isolated retinal pigment epithelium of the frog.
    DiMattio J; Degnan KJ; Zadunaisky JA
    Exp Eye Res; 1983 Nov; 37(5):409-20. PubMed ID: 6608452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of Ion Transport Across the Mouse Retinal Pigment Epithelium Measured In Vitro.
    Skarphedinsdottir SB; Eysteinsson T; Árnason SS
    Invest Ophthalmol Vis Sci; 2020 Jun; 61(6):31. PubMed ID: 32539134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The P2Y(2) receptor agonist INS37217 stimulates RPE fluid transport in vitro and retinal reattachment in rat.
    Maminishkis A; Jalickee S; Blaug SA; Rymer J; Yerxa BR; Peterson WM; Miller SS
    Invest Ophthalmol Vis Sci; 2002 Nov; 43(11):3555-66. PubMed ID: 12407168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of carbonic anhydrase inhibitors in the management of macular edema.
    Wolfensberger TJ
    Doc Ophthalmol; 1999; 97(3-4):387-97. PubMed ID: 10896355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane-bound carbonic anhydrase in human retinal pigment epithelium.
    Wolfensberger TJ; Mahieu I; Jarvis-Evans J; Boulton M; Carter ND; Nógrádi A; Hollande E; Bird AC
    Invest Ophthalmol Vis Sci; 1994 Aug; 35(9):3401-7. PubMed ID: 8056514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Furosemide-sensitive Cl transport in embryonic chicken retinal pigment epithelium.
    Frambach DA; Misfeldt DS
    Am J Physiol; 1983 Jun; 244(6):F679-85. PubMed ID: 6859259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aspects of electrolyte transport across isolated dog retinal pigment epithelium.
    Tsuboi S; Manabe R; Iizuka S
    Am J Physiol; 1986 May; 250(5 Pt 2):F781-4. PubMed ID: 3706532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbonic anhydrase type II in regenerating retinal pigment epithelium. A histochemical study in the rabbit.
    Korte GE; Smith J
    Experientia; 1993 Sep; 49(9):789-91. PubMed ID: 8405302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acidification stimulates chloride and fluid absorption across frog retinal pigment epithelium.
    Edelman JL; Lin H; Miller SS
    Am J Physiol; 1994 Apr; 266(4 Pt 1):C946-56. PubMed ID: 8178967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling of 22Na and 36Cl uptake in cultured pigmented ciliary epithelial cells: a proposed role for the isoenzymes of carbonic anhydrase.
    Helbig H; Korbmacher C; Erb C; Nawrath M; Knuuttila KG; Wistrand P; Wiederholt M
    Curr Eye Res; 1989 Nov; 8(11):1111-9. PubMed ID: 2558846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermofusion of the retina with the RPE to seal tears during retinal detachment repair.
    Heriot WJ
    Graefes Arch Clin Exp Ophthalmol; 2016 Apr; 254(4):691-6. PubMed ID: 26916781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.