These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
786 related articles for article (PubMed ID: 32019578)
21. Inactivation of androgen-induced regulator ARD1 inhibits androgen receptor acetylation and prostate tumorigenesis. Wang Z; Wang Z; Guo J; Li Y; Bavarva JH; Qian C; Brahimi-Horn MC; Tan D; Liu W Proc Natl Acad Sci U S A; 2012 Feb; 109(8):3053-8. PubMed ID: 22315407 [TBL] [Abstract][Full Text] [Related]
22. LncRNA GAS5 participates in the regulation of dexamethasone on androgen receptor -negative and -positive prostate cancer cell proliferation. Hu J; Deng J; Cao R; Xiong S; Guo J Mol Cell Probes; 2020 Oct; 53():101607. PubMed ID: 32470500 [TBL] [Abstract][Full Text] [Related]
23. Independence of HIF1a and androgen signaling pathways in prostate cancer. Tran MGB; Bibby BAS; Yang L; Lo F; Warren AY; Shukla D; Osborne M; Hadfield J; Carroll T; Stark R; Scott H; Ramos-Montoya A; Massie C; Maxwell P; West CML; Mills IG; Neal DE BMC Cancer; 2020 May; 20(1):469. PubMed ID: 32450824 [TBL] [Abstract][Full Text] [Related]
24. Overexpression of AR-regulated lncRNA TMPO-AS1 correlates with tumor progression and poor prognosis in prostate cancer. Huang W; Su X; Yan W; Kong Z; Wang D; Huang Y; Zhai Q; Zhang X; Wu H; Li Y; Li T; Wan X Prostate; 2018 Dec; 78(16):1248-1261. PubMed ID: 30105831 [TBL] [Abstract][Full Text] [Related]
25. A novel androgen-reduced prostate-specific lncRNA, PSLNR, inhibits prostate-cancer progression in part by regulating the p53-dependent pathway. Wang D; Wan X; Zhang Y; Kong Z; Lu Y; Sun X; Huang Y; Ji C; Li D; Luo J; Gu W; Wang C; Li Y; Xu Y Prostate; 2019 Sep; 79(12):1362-1377. PubMed ID: 31269242 [TBL] [Abstract][Full Text] [Related]
26. Nimotuzumab inhibits epithelial-mesenchymal transition in prostate cancer by targeting the Akt/YB-1/AR axis. Hu S; Duan YX; Zhou Q; Wang Y; Lu Q IUBMB Life; 2019 Jul; 71(7):928-941. PubMed ID: 30907986 [TBL] [Abstract][Full Text] [Related]
27. The glycolysis-related AMPK/ULK signaling pathway mediates the inhibitory effect of adiponectin in prostate cancer cells. Yang S; Sun Y; Guo Y; Zhao Z; Hu F; Cong L Mol Cell Endocrinol; 2024 Nov; 593():112338. PubMed ID: 39127402 [TBL] [Abstract][Full Text] [Related]
28. The NLR-related protein NWD1 is associated with prostate cancer and modulates androgen receptor signaling. Correa RG; Krajewska M; Ware CF; Gerlic M; Reed JC Oncotarget; 2014 Mar; 5(6):1666-82. PubMed ID: 24681825 [TBL] [Abstract][Full Text] [Related]
29. Overexpression of lysine-specific demethylase 1 promotes androgen-independent transition of human prostate cancer LNCaP cells through activation of the AR signaling pathway and suppression of the p53 signaling pathway. Li X; Li T; Chen D; Zhang P; Song Y; Zhu H; Xiao Y; Xing Y Oncol Rep; 2016 Jan; 35(1):584-92. PubMed ID: 26534764 [TBL] [Abstract][Full Text] [Related]
30. Prostate-specific membrane antigen modulates the progression of prostate cancer by regulating the synthesis of arginine and proline and the expression of androgen receptors and Fos proto-oncogenes. Hong X; Mao L; Xu L; Hu Q; Jia R Bioengineered; 2022 Jan; 13(1):995-1012. PubMed ID: 34974814 [TBL] [Abstract][Full Text] [Related]
31. Ablation of LGR4 signaling enhances radiation sensitivity of prostate cancer cells. Liang F; Zhang H; Cheng D; Gao H; Wang J; Yue J; Zhang N; Wang J; Wang Z; Zhao B Life Sci; 2021 Jan; 265():118737. PubMed ID: 33171177 [TBL] [Abstract][Full Text] [Related]
32. Transcriptional regulation of core autophagy and lysosomal genes by the androgen receptor promotes prostate cancer progression. Blessing AM; Rajapakshe K; Reddy Bollu L; Shi Y; White MA; Pham AH; Lin C; Jonsson P; Cortes CJ; Cheung E; La Spada AR; Bast RC; Merchant FA; Coarfa C; Frigo DE Autophagy; 2017 Mar; 13(3):506-521. PubMed ID: 27977328 [TBL] [Abstract][Full Text] [Related]
33. Nemo-like kinase induces apoptosis and inhibits androgen receptor signaling in prostate cancer cells. Emami KH; Brown LG; Pitts TE; Sun X; Vessella RL; Corey E Prostate; 2009 Oct; 69(14):1481-92. PubMed ID: 19514049 [TBL] [Abstract][Full Text] [Related]
34. Establishment and characterization of androgen-independent human prostate cancer cell lines, LN-REC4 and LNCaP-SF, from LNCaP. Iwasa Y; Mizokami A; Miwa S; Koshida K; Namiki M Int J Urol; 2007 Mar; 14(3):233-9. PubMed ID: 17430262 [TBL] [Abstract][Full Text] [Related]
35. Ankyrin G expression is associated with androgen receptor stability, invasiveness, and lethal outcome in prostate cancer patients. Wang T; Abou-Ouf H; Hegazy SA; Alshalalfa M; Stoletov K; Lewis J; Donnelly B; Bismar TA J Mol Med (Berl); 2016 Dec; 94(12):1411-1422. PubMed ID: 27534968 [TBL] [Abstract][Full Text] [Related]
36. The prostate cancer-up-regulated Myc-associated zinc-finger protein (MAZ) modulates proliferation and metastasis through reciprocal regulation of androgen receptor. Jiao L; Li Y; Shen D; Xu C; Wang L; Huang G; Chen L; Yang Y; Yang C; Yu Y; Sun Y Med Oncol; 2013; 30(2):570. PubMed ID: 23609189 [TBL] [Abstract][Full Text] [Related]
37. Lgr4 promotes prostate tumorigenesis through the Jmjd2a/AR signaling pathway. Zhang J; Li Q; Zhang S; Xu Q; Wang T Exp Cell Res; 2016 Nov; 349(1):77-84. PubMed ID: 27743893 [TBL] [Abstract][Full Text] [Related]
38. MicroRNA-498 promotes proliferation, migration, and invasion of prostate cancer cells and decreases radiation sensitivity by targeting PTEN. Duan XM; Liu XN; Li YX; Cao YQ; Silayiding A; Zhang RK; Wang JP Kaohsiung J Med Sci; 2019 Nov; 35(11):659-671. PubMed ID: 31332950 [TBL] [Abstract][Full Text] [Related]
39. FAM64A is an androgen receptor-regulated feedback tumor promoter in prostate cancer. Zhou Y; Ou L; Xu J; Yuan H; Luo J; Shi B; Li X; Yang S; Wang Y Cell Death Dis; 2021 Jul; 12(7):668. PubMed ID: 34215720 [TBL] [Abstract][Full Text] [Related]
40. GLS-driven glutamine catabolism contributes to prostate cancer radiosensitivity by regulating the redox state, stemness and ATG5-mediated autophagy. Mukha A; Kahya U; Linge A; Chen O; Löck S; Lukiyanchuk V; Richter S; Alves TC; Peitzsch M; Telychko V; Skvortsov S; Negro G; Aschenbrenner B; Skvortsova II; Mirtschink P; Lohaus F; Hölscher T; Neubauer H; Rivandi M; Labitzky V; Lange T; Franken A; Behrens B; Stoecklein NH; Toma M; Sommer U; Zschaeck S; Rehm M; Eisenhofer G; Schwager C; Abdollahi A; Groeben C; Kunz-Schughart LA; Baretton GB; Baumann M; Krause M; Peitzsch C; Dubrovska A Theranostics; 2021; 11(16):7844-7868. PubMed ID: 34335968 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]