These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 320197)

  • 1. "Active" one-carbon generation in Saccharomyces cerevisiae.
    Ogur M; Liu TN; Cheung I; Paulavicius I; Wales W; Mehnert D; Blaise D
    J Bacteriol; 1977 Feb; 129(2):926-33. PubMed ID: 320197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxalate, formate, formamide, and methanol metabolism in Thiobacillus novellus.
    Chandra TS; Shethna YI
    J Bacteriol; 1977 Aug; 131(2):389-98. PubMed ID: 885836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial growth on oxalate by a route not involving glyoxylate carboligase.
    Blackmore MA; Quayle JR
    Biochem J; 1970 Jun; 118(1):53-9. PubMed ID: 5472155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of L-threonine and its relationship to sclerotium formation in Sclerotium rolfsii.
    Kritzman G; Okon Y; Chet I; Henis Y
    J Gen Microbiol; 1976 Jul; 95(1):78-86. PubMed ID: 986416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic regulation in Pseudomonas oxalaticus OX1. Enzyme and coenzyme concentration changes during substrate transition experiments.
    Knight M; Dijkhuizen L; Harder W
    Arch Microbiol; 1978 Jan; 116(1):85-90. PubMed ID: 203239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism of serine and glycine in baker's yeast.
    De Boiso JF; Stoppani AO
    Biochim Biophys Acta; 1967 Oct; 148(1):48-59. PubMed ID: 6077051
    [No Abstract]   [Full Text] [Related]  

  • 7. 13C NMR detection of folate-mediated serine and glycine synthesis in vivo in Saccharomyces cerevisiae.
    Pasternack LB; Laude DA; Appling DR
    Biochemistry; 1992 Sep; 31(37):8713-9. PubMed ID: 1390656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis of glyoxylate from glycine in Saccharomyces cerevisiae.
    Villas-Bôas SG; Kesson M; Nielsen J
    FEMS Yeast Res; 2005 May; 5(8):703-9. PubMed ID: 15851099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of mitochondrial and cytoplasmic serine hydroxymethyltransferase isozymes in de novo purine synthesis in Saccharomyces cerevisiae.
    Kastanos EK; Woldman YY; Appling DR
    Biochemistry; 1997 Dec; 36(48):14956-64. PubMed ID: 9398220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The metabolism of nitrilotriacetate by a pseudomonad.
    Cripps RE; Noble AS
    Biochem J; 1973 Dec; 136(4):1059-68. PubMed ID: 4362331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering and evolution of the complete Reductive Glycine Pathway in Saccharomyces cerevisiae for formate and CO
    Bysani VR; Alam AS; Bar-Even A; Machens F
    Metab Eng; 2024 Jan; 81():167-181. PubMed ID: 38040111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on the regulation and localization of the glyoxylate cycle enzymes in Saccharomyces cerevisiae.
    Duntze W; Neumann D; Gancedo JM; Atzpodien W; Holzer H
    Eur J Biochem; 1969 Aug; 10(1):83-9. PubMed ID: 5345986
    [No Abstract]   [Full Text] [Related]  

  • 13. Glycine decarboxylase in Rhodopseudomonas spheroides and in rat liver mitochondria.
    Tait GH
    Biochem J; 1970 Aug; 118(5):819-30. PubMed ID: 5476725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 13C NMR analysis of intercompartmental flow of one-carbon units into choline and purines in Saccharomyces cerevisiae.
    Pasternack LB; Laude DA; Appling DR
    Biochemistry; 1994 Jan; 33(1):74-82. PubMed ID: 8286365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic and physiological control of serine and glycine biosynthesis in Saccharomyces.
    Ulane R; Ogur M
    J Bacteriol; 1972 Jan; 109(1):34-43. PubMed ID: 4333378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Requirement of a Functional Flavin Mononucleotide Prenyltransferase for the Activity of a Bacterial Decarboxylase in a Heterologous Muconic Acid Pathway in Saccharomyces cerevisiae.
    Weber HE; Gottardi M; Brückner C; Oreb M; Boles E; Tripp J
    Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28283523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CO2 migration pathways in oxalate decarboxylase and clues about its active site.
    Karmakar T; Periyasamy G; Balasubramanian S
    J Phys Chem B; 2013 Oct; 117(41):12451-60. PubMed ID: 24053484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tracing Metabolic Fate of Mitochondrial Glycine Cleavage System Derived Formate In Vitro and In Vivo.
    Tan YL; Sou NL; Tang FY; Ko HA; Yeh WT; Peng JH; Chiang EI
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33233834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae.
    Postma E; Verduyn C; Scheffers WA; Van Dijken JP
    Appl Environ Microbiol; 1989 Feb; 55(2):468-77. PubMed ID: 2566299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of the balance of one-carbon metabolism in Saccharomyces cerevisiae.
    Piper MD; Hong SP; Ball GE; Dawes IW
    J Biol Chem; 2000 Oct; 275(40):30987-95. PubMed ID: 10871621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.