BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 32019787)

  • 1. Deciphering the Rules Underlying Xenogeneic Silencing and Counter-Silencing of Lsr2-like Proteins Using CgpS of Corynebacterium glutamicum as a Model.
    Wiechert J; Filipchyk A; Hünnefeld M; Gätgens C; Brehm J; Heermann R; Frunzke J
    mBio; 2020 Feb; 11(1):. PubMed ID: 32019787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inducible Expression Systems Based on Xenogeneic Silencing and Counter-Silencing and Design of a Metabolic Toggle Switch.
    Wiechert J; Gätgens C; Wirtz A; Frunzke J
    ACS Synth Biol; 2020 Aug; 9(8):2023-2038. PubMed ID: 32649183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silencing of cryptic prophages in Corynebacterium glutamicum.
    Pfeifer E; Hünnefeld M; Popa O; Polen T; Kohlheyer D; Baumgart M; Frunzke J
    Nucleic Acids Res; 2016 Dec; 44(21):10117-10131. PubMed ID: 27492287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Xenogeneic Silencing and Bacterial Genome Evolution: Mechanisms for DNA Recognition Imply Multifaceted Roles of Xenogeneic Silencers.
    Duan B; Ding P; Navarre WW; Liu J; Xia B
    Mol Biol Evol; 2021 Sep; 38(10):4135-4148. PubMed ID: 34003286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel AT-Rich DNA Recognition Mechanism for Bacterial Xenogeneic Silencer MvaT.
    Ding P; McFarland KA; Jin S; Tong G; Duan B; Yang A; Hughes TR; Liu J; Dove SL; Navarre WW; Xia B
    PLoS Pathog; 2015 Jun; 11(6):e1004967. PubMed ID: 26068099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Xenogeneic Silencing on Phage-Host Interactions.
    Pfeifer E; Hünnefeld M; Popa O; Frunzke J
    J Mol Biol; 2019 Nov; 431(23):4670-4683. PubMed ID: 30796986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silencing cryptic specialized metabolism in
    Gehrke EJ; Zhang X; Pimentel-Elardo SM; Johnson AR; Rees CA; Jones SE; Hindra ; Gehrke SS; Turvey S; Boursalie S; Hill JE; Carlson EE; Nodwell JR; Elliot MA
    Elife; 2019 Jun; 8():. PubMed ID: 31215866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum.
    Brune I; Werner H; Hüser AT; Kalinowski J; Pühler A; Tauch A
    BMC Genomics; 2006 Feb; 7():21. PubMed ID: 16469103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Impact of Gene Silencing on Horizontal Gene Transfer and Bacterial Evolution.
    Navarre WW
    Adv Microb Physiol; 2016; 69():157-186. PubMed ID: 27720010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Horizontally Acquired Homologs of Xenogeneic Silencers: Modulators of Gene Expression Encoded by Plasmids, Phages and Genomic Islands.
    Piña-Iturbe A; Suazo ID; Hoppe-Elsholz G; Ulloa-Allendes D; González PA; Kalergis AM; Bueno SM
    Genes (Basel); 2020 Jan; 11(2):. PubMed ID: 32013150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for recognition of AT-rich DNA by unrelated xenogeneic silencing proteins.
    Gordon BR; Li Y; Cote A; Weirauch MT; Ding P; Hughes TR; Navarre WW; Xia B; Liu J
    Proc Natl Acad Sci U S A; 2011 Jun; 108(26):10690-5. PubMed ID: 21673140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interplay between Nucleoid-Associated Proteins and Transcription Factors in Controlling Specialized Metabolism in
    Zhang X; Andres SN; Elliot MA
    mBio; 2021 Aug; 12(4):e0107721. PubMed ID: 34311581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silencing of foreign DNA in bacteria.
    Ali SS; Xia B; Liu J; Navarre WW
    Curr Opin Microbiol; 2012 Apr; 15(2):175-81. PubMed ID: 22265250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of putative xenogeneic silencers in prokaryote genomes.
    Perez-Rueda E; Ibarra JA
    Comput Biol Chem; 2015 Oct; 58():167-72. PubMed ID: 26247404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogenetic Distribution of WhiB- and Lsr2-Type Regulators in Actinobacteriophage Genomes.
    Sharma V; Hardy A; Luthe T; Frunzke J
    Microbiol Spectr; 2021 Dec; 9(3):e0072721. PubMed ID: 34817283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lsr2 and Its Novel Paralogue Mediate the Adjustment of Mycobacterium smegmatis to Unfavorable Environmental Conditions.
    Kołodziej M; Łebkowski T; Płociński P; Hołówka J; Paściak M; Wojtaś B; Bury K; Konieczny I; Dziadek J; Zakrzewska-Czerwińska J
    mSphere; 2021 May; 6(3):. PubMed ID: 33980681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The transcriptional regulator SsuR activates expression of the Corynebacterium glutamicum sulphonate utilization genes in the absence of sulphate.
    Koch DJ; Rückert C; Albersmeier A; Hüser AT; Tauch A; Pühler A; Kalinowski J
    Mol Microbiol; 2005 Oct; 58(2):480-94. PubMed ID: 16194234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated circuits: how transcriptional silencing and counter-silencing facilitate bacterial evolution.
    Will WR; Navarre WW; Fang FC
    Curr Opin Microbiol; 2015 Feb; 23():8-13. PubMed ID: 25461567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lsr2 is a nucleoid-associated protein that targets AT-rich sequences and virulence genes in Mycobacterium tuberculosis.
    Gordon BR; Li Y; Wang L; Sintsova A; van Bakel H; Tian S; Navarre WW; Xia B; Liu J
    Proc Natl Acad Sci U S A; 2010 Mar; 107(11):5154-9. PubMed ID: 20133735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lsr2 of Mycobacterium tuberculosis is a DNA-bridging protein.
    Chen JM; Ren H; Shaw JE; Wang YJ; Li M; Leung AS; Tran V; Berbenetz NM; Kocíncová D; Yip CM; Reyrat JM; Liu J
    Nucleic Acids Res; 2008 Apr; 36(7):2123-35. PubMed ID: 18187505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.