These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 32019787)

  • 1. Deciphering the Rules Underlying Xenogeneic Silencing and Counter-Silencing of Lsr2-like Proteins Using CgpS of Corynebacterium glutamicum as a Model.
    Wiechert J; Filipchyk A; Hünnefeld M; Gätgens C; Brehm J; Heermann R; Frunzke J
    mBio; 2020 Feb; 11(1):. PubMed ID: 32019787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inducible Expression Systems Based on Xenogeneic Silencing and Counter-Silencing and Design of a Metabolic Toggle Switch.
    Wiechert J; Gätgens C; Wirtz A; Frunzke J
    ACS Synth Biol; 2020 Aug; 9(8):2023-2038. PubMed ID: 32649183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silencing of cryptic prophages in Corynebacterium glutamicum.
    Pfeifer E; Hünnefeld M; Popa O; Polen T; Kohlheyer D; Baumgart M; Frunzke J
    Nucleic Acids Res; 2016 Dec; 44(21):10117-10131. PubMed ID: 27492287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Xenogeneic Silencing and Bacterial Genome Evolution: Mechanisms for DNA Recognition Imply Multifaceted Roles of Xenogeneic Silencers.
    Duan B; Ding P; Navarre WW; Liu J; Xia B
    Mol Biol Evol; 2021 Sep; 38(10):4135-4148. PubMed ID: 34003286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel AT-Rich DNA Recognition Mechanism for Bacterial Xenogeneic Silencer MvaT.
    Ding P; McFarland KA; Jin S; Tong G; Duan B; Yang A; Hughes TR; Liu J; Dove SL; Navarre WW; Xia B
    PLoS Pathog; 2015 Jun; 11(6):e1004967. PubMed ID: 26068099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Xenogeneic Silencing on Phage-Host Interactions.
    Pfeifer E; Hünnefeld M; Popa O; Frunzke J
    J Mol Biol; 2019 Nov; 431(23):4670-4683. PubMed ID: 30796986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silencing cryptic specialized metabolism in
    Gehrke EJ; Zhang X; Pimentel-Elardo SM; Johnson AR; Rees CA; Jones SE; Hindra ; Gehrke SS; Turvey S; Boursalie S; Hill JE; Carlson EE; Nodwell JR; Elliot MA
    Elife; 2019 Jun; 8():. PubMed ID: 31215866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum.
    Brune I; Werner H; Hüser AT; Kalinowski J; Pühler A; Tauch A
    BMC Genomics; 2006 Feb; 7():21. PubMed ID: 16469103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Impact of Gene Silencing on Horizontal Gene Transfer and Bacterial Evolution.
    Navarre WW
    Adv Microb Physiol; 2016; 69():157-186. PubMed ID: 27720010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Horizontally Acquired Homologs of Xenogeneic Silencers: Modulators of Gene Expression Encoded by Plasmids, Phages and Genomic Islands.
    Piña-Iturbe A; Suazo ID; Hoppe-Elsholz G; Ulloa-Allendes D; González PA; Kalergis AM; Bueno SM
    Genes (Basel); 2020 Jan; 11(2):. PubMed ID: 32013150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for recognition of AT-rich DNA by unrelated xenogeneic silencing proteins.
    Gordon BR; Li Y; Cote A; Weirauch MT; Ding P; Hughes TR; Navarre WW; Xia B; Liu J
    Proc Natl Acad Sci U S A; 2011 Jun; 108(26):10690-5. PubMed ID: 21673140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interplay between Nucleoid-Associated Proteins and Transcription Factors in Controlling Specialized Metabolism in
    Zhang X; Andres SN; Elliot MA
    mBio; 2021 Aug; 12(4):e0107721. PubMed ID: 34311581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silencing of foreign DNA in bacteria.
    Ali SS; Xia B; Liu J; Navarre WW
    Curr Opin Microbiol; 2012 Apr; 15(2):175-81. PubMed ID: 22265250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of putative xenogeneic silencers in prokaryote genomes.
    Perez-Rueda E; Ibarra JA
    Comput Biol Chem; 2015 Oct; 58():167-72. PubMed ID: 26247404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogenetic Distribution of WhiB- and Lsr2-Type Regulators in Actinobacteriophage Genomes.
    Sharma V; Hardy A; Luthe T; Frunzke J
    Microbiol Spectr; 2021 Dec; 9(3):e0072721. PubMed ID: 34817283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lsr2 and Its Novel Paralogue Mediate the Adjustment of Mycobacterium smegmatis to Unfavorable Environmental Conditions.
    Kołodziej M; Łebkowski T; Płociński P; Hołówka J; Paściak M; Wojtaś B; Bury K; Konieczny I; Dziadek J; Zakrzewska-Czerwińska J
    mSphere; 2021 May; 6(3):. PubMed ID: 33980681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The transcriptional regulator SsuR activates expression of the Corynebacterium glutamicum sulphonate utilization genes in the absence of sulphate.
    Koch DJ; Rückert C; Albersmeier A; Hüser AT; Tauch A; Pühler A; Kalinowski J
    Mol Microbiol; 2005 Oct; 58(2):480-94. PubMed ID: 16194234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated circuits: how transcriptional silencing and counter-silencing facilitate bacterial evolution.
    Will WR; Navarre WW; Fang FC
    Curr Opin Microbiol; 2015 Feb; 23():8-13. PubMed ID: 25461567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lsr2 is a nucleoid-associated protein that targets AT-rich sequences and virulence genes in Mycobacterium tuberculosis.
    Gordon BR; Li Y; Wang L; Sintsova A; van Bakel H; Tian S; Navarre WW; Xia B; Liu J
    Proc Natl Acad Sci U S A; 2010 Mar; 107(11):5154-9. PubMed ID: 20133735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lsr2 of Mycobacterium tuberculosis is a DNA-bridging protein.
    Chen JM; Ren H; Shaw JE; Wang YJ; Li M; Leung AS; Tran V; Berbenetz NM; Kocíncová D; Yip CM; Reyrat JM; Liu J
    Nucleic Acids Res; 2008 Apr; 36(7):2123-35. PubMed ID: 18187505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.