These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32019938)

  • 1. Prosthetic model, but not stiffness or height, affects maximum running velocity in athletes with unilateral transtibial amputations.
    Taboga P; Drees EK; Beck ON; Grabowski AM
    Sci Rep; 2020 Feb; 10(1):1763. PubMed ID: 32019938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prosthetic model, but not stiffness or height, affects the metabolic cost of running for athletes with unilateral transtibial amputations.
    Beck ON; Taboga P; Grabowski AM
    J Appl Physiol (1985); 2017 Jul; 123(1):38-48. PubMed ID: 28360121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prosthetic shape, but not stiffness or height, affects the maximum speed of sprinters with bilateral transtibial amputations.
    Taboga P; Beck ON; Grabowski AM
    PLoS One; 2020; 15(2):e0229035. PubMed ID: 32078639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The biomechanics of the fastest sprinter with a unilateral transtibial amputation.
    Beck ON; Grabowski AM
    J Appl Physiol (1985); 2018 Mar; 124(3):641-645. PubMed ID: 29051334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced prosthetic stiffness lowers the metabolic cost of running for athletes with bilateral transtibial amputations.
    Beck ON; Taboga P; Grabowski AM
    J Appl Physiol (1985); 2017 Apr; 122(4):976-984. PubMed ID: 28104752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How do prosthetic stiffness, height and running speed affect the biomechanics of athletes with bilateral transtibial amputations?
    Beck ON; Taboga P; Grabowski AM
    J R Soc Interface; 2017 Jun; 14(131):. PubMed ID: 28659414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of step frequency in transtibial amputee endurance athletes using a running-specific prosthesis.
    Oudenhoven LM; Boes JM; Hak L; Faber GS; Houdijk H
    J Biomech; 2017 Jan; 51():42-48. PubMed ID: 27923481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spring-mass behavioural adaptations to acute changes in prosthetic blade stiffness during submaximal running in unilateral transtibial prosthesis users.
    Barnett CT; De Asha AR; Skervin TK; Buckley JG; Foster RJ
    Gait Posture; 2022 Oct; 98():153-159. PubMed ID: 36126535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing the Mechanical Properties of Running-Specific Prostheses.
    Beck ON; Taboga P; Grabowski AM
    PLoS One; 2016; 11(12):e0168298. PubMed ID: 27973573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Running-specific prosthesis model, stiffness and height affect biomechanics and asymmetry of athletes with unilateral leg amputations across speeds.
    Tacca JR; Beck ON; Taboga P; Grabowski AM
    R Soc Open Sci; 2022 Jun; 9(6):211691. PubMed ID: 35706678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Running-specific prostheses reduce lower-limb muscle activity compared to daily-use prostheses in people with unilateral transtibial amputations.
    Sepp LA; Nelson-Wong E; Baum BS; Silverman AK
    J Electromyogr Kinesiol; 2020 Dec; 55():102462. PubMed ID: 33091790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Added lower limb mass does not affect biomechanical asymmetry but increases metabolic power in runners with a unilateral transtibial amputation.
    Alcantara RS; Beck ON; Grabowski AM
    Eur J Appl Physiol; 2020 Jun; 120(6):1449-1456. PubMed ID: 32347372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maximum-speed curve-running biomechanics of sprinters with and without unilateral leg amputations.
    Taboga P; Kram R; Grabowski AM
    J Exp Biol; 2016 Mar; 219(Pt 6):851-8. PubMed ID: 26985053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical factors affecting individuals with lower limb amputations running using running-specific prostheses: A systematic review.
    Hadj-Moussa F; Ngan CC; Andrysek J
    Gait Posture; 2022 Feb; 92():83-95. PubMed ID: 34837772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vertical stiffness during one-legged hopping with and without using a running-specific prosthesis.
    Hobara H; Hashizume S; Funken J; Willwacher S; Müller R; Grabowski AM; Potthast W
    J Biomech; 2019 Mar; 86():34-39. PubMed ID: 30770198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterisation of the responsive properties of two running-specific prosthetic models.
    Grobler L; Ferreira S; Vanwanseele B; Terblanche EE
    Prosthet Orthot Int; 2017 Apr; 41(2):141-148. PubMed ID: 27484759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Athletes With Versus Without Leg Amputations: Different Biomechanics, Similar Running Economy.
    Beck ON; Grabowski AM
    Exerc Sport Sci Rev; 2019 Jan; 47(1):15-21. PubMed ID: 30334850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sprint kinematics of athletes with lower-limb amputations.
    Buckley JG
    Arch Phys Med Rehabil; 1999 May; 80(5):501-8. PubMed ID: 10326911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leg stiffness during sprinting in transfemoral amputees with running-specific prosthesis.
    Sano Y; Makimoto A; Hashizume S; Murai A; Kobayashi Y; Takemura H; Hobara H
    Gait Posture; 2017 Jul; 56():65-67. PubMed ID: 28505545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effect of Prosthetic Alignment on Prosthetic and Total Leg Stiffness While Running With Simulated Running-Specific Prostheses.
    Groothuis A; Houdijk H
    Front Sports Act Living; 2019; 1():16. PubMed ID: 33344940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.