These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 32019992)

  • 1. Energy harvesting thermocell with use of phase transition.
    Shibata T; Iwaizumi H; Fukuzumi Y; Moritomo Y
    Sci Rep; 2020 Feb; 10(1):1813. PubMed ID: 32019992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal efficiency of a thermocell made of Prussian blue analogues.
    Shibata T; Fukuzumi Y; Moritomo Y
    Sci Rep; 2018 Oct; 8(1):14784. PubMed ID: 30283129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of 3d-electron configuration entropy on the temperature coefficient of redox potential in Co
    Iwaizumi H; Fujiwara Y; Fukuzumi Y; Moritomo Y
    Dalton Trans; 2019 Feb; 48(6):1964-1968. PubMed ID: 30465665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ IR spectroscopy during oxidation process of cobalt Prussian blue analogues.
    Niwa H; Moriya T; Shibata T; Fukuzumi Y; Moritomo Y
    Sci Rep; 2021 Feb; 11(1):4119. PubMed ID: 33603152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron (II/III) perchlorate electrolytes for electrochemically harvesting low-grade thermal energy.
    Kim JH; Lee JH; Palem RR; Suh MS; Lee HH; Kang TJ
    Sci Rep; 2019 Jun; 9(1):8706. PubMed ID: 31213633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of charge-transfer-induced spin transition temperature on cobalt-iron Prussian blue analogues.
    Shimamoto N; Ohkoshi S; Sato O; Hashimoto K
    Inorg Chem; 2002 Feb; 41(4):678-84. PubMed ID: 11849066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photomagnetic K(0.25)Ni(1-x)Co(x)[Fe(CN)6]·nH2O and K(0.25)Co[Fe(CN)6](0.75y)[Cr(CN)6](0.75(1-y))·nH2O Prussian blue analogue solid solutions.
    Pajerowski DM; Yamamoto T; Einaga Y
    Inorg Chem; 2012 Mar; 51(6):3648-55. PubMed ID: 22397644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational Design of Thermocells Driven by the Volume Phase Transition of Hydrogel Nanoparticles.
    Guo B; Miura Y; Hoshino Y
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):32184-32192. PubMed ID: 34197066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermo-electrochemical cells for waste heat harvesting - progress and perspectives.
    Dupont MF; MacFarlane DR; Pringle JM
    Chem Commun (Camb); 2017 Jun; 53(47):6288-6302. PubMed ID: 28534592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncovering the Interplay of Competing Distortions in the Prussian Blue Analogue K
    Cattermull J; Sada K; Hurlbutt K; Cassidy SJ; Pasta M; Goodwin AL
    Chem Mater; 2022 Jun; 34(11):5000-5008. PubMed ID: 35722203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the Prussian Blue Analog Co
    Deng L; Yang Z; Tan L; Zeng L; Zhu Y; Guo L
    Adv Mater; 2018 Aug; 30(31):e1802510. PubMed ID: 29931774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Electricity-Generating Window Made of a Transparent Energy Harvester of Thermocells.
    Lee JH; Shin G; Baek JY; Kang TJ
    ACS Appl Mater Interfaces; 2021 May; 13(18):21157-21165. PubMed ID: 33793183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charging-free electrochemical system for harvesting low-grade thermal energy.
    Yang Y; Lee SW; Ghasemi H; Loomis J; Li X; Kraemer D; Zheng G; Cui Y; Chen G
    Proc Natl Acad Sci U S A; 2014 Dec; 111(48):17011-6. PubMed ID: 25404325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quasi-solid-State Electrolytes for Low-Grade Thermal Energy Harvesting using a Cobalt Redox Couple.
    Taheri A; MacFarlane DR; Pozo-Gonzalo C; Pringle JM
    ChemSusChem; 2018 Aug; 11(16):2788-2796. PubMed ID: 29873193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial cellulose-based dual chemical reaction coupled hydrogel thermocells for efficient heat harvesting.
    Zong Y; Lou J; Li H; Li X; Jiang Y; Ding Q; Liu Z; Han W
    Carbohydr Polym; 2022 Oct; 294():119789. PubMed ID: 35868797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell.
    Hu R; Cola BA; Haram N; Barisci JN; Lee S; Stoughton S; Wallace G; Too C; Thomas M; Gestos A; Cruz ME; Ferraris JP; Zakhidov AA; Baughman RH
    Nano Lett; 2010 Mar; 10(3):838-46. PubMed ID: 20170193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High seebeck coefficient in middle-temperature thermocell with deep eutectic solvent.
    Antariksa NF; Yamada T; Kimizuka N
    Sci Rep; 2021 Jun; 11(1):11929. PubMed ID: 34099827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermocells for Hybrid Photovoltaic/Thermal Systems.
    Shin G; Jeon JG; Kim JH; Lee JH; Kim HJ; Lee J; Kang KM; Kang TJ
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32326310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short-Circuit Current in Polymeric Membrane-Based Thermocells: An Experimental Study.
    Barragán VM
    Membranes (Basel); 2021 Jun; 11(7):. PubMed ID: 34203522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature coefficients of Li-ion battery single electrode potentials and related entropy changes - revisited.
    Swiderska-Mocek A; Rudnicka E; Lewandowski A
    Phys Chem Chem Phys; 2019 Jan; 21(4):2115-2120. PubMed ID: 30640324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.