These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 32020204)
1. Exo1 phosphorylation inhibits exonuclease activity and prevents fork collapse in rad53 mutants independently of the 14-3-3 proteins. Morafraile EC; Bugallo A; Carreira R; Fernández M; Martín-Castellanos C; Blanco MG; Segurado M Nucleic Acids Res; 2020 Apr; 48(6):3053-3070. PubMed ID: 32020204 [TBL] [Abstract][Full Text] [Related]
2. Genetic Evidence for Roles of Yeast Mitotic Cyclins at Single-Stranded Gaps Created by DNA Replication. Signon L G3 (Bethesda); 2018 Feb; 8(2):737-752. PubMed ID: 29279302 [TBL] [Abstract][Full Text] [Related]
4. Exo1 processes stalled replication forks and counteracts fork reversal in checkpoint-defective cells. Cotta-Ramusino C; Fachinetti D; Lucca C; Doksani Y; Lopes M; Sogo J; Foiani M Mol Cell; 2005 Jan; 17(1):153-9. PubMed ID: 15629726 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of spindle extension through the yeast S phase checkpoint is coupled to replication fork stability and the integrity of centromeric DNA. Julius J; Peng J; McCulley A; Caridi C; Arnak R; See C; Nugent CI; Feng W; Bachant J Mol Biol Cell; 2019 Oct; 30(22):2771-2789. PubMed ID: 31509480 [TBL] [Abstract][Full Text] [Related]
6. Separate roles for the DNA damage checkpoint protein kinases in stabilizing DNA replication forks. Segurado M; Diffley JF Genes Dev; 2008 Jul; 22(13):1816-27. PubMed ID: 18593882 [TBL] [Abstract][Full Text] [Related]
7. Checkpoint genes and Exo1 regulate nearby inverted repeat fusions that form dicentric chromosomes in Saccharomyces cerevisiae. Kaochar S; Shanks L; Weinert T Proc Natl Acad Sci U S A; 2010 Dec; 107(50):21605-10. PubMed ID: 21098663 [TBL] [Abstract][Full Text] [Related]
8. Checkpoint-dependent phosphorylation of Exo1 modulates the DNA damage response. Morin I; Ngo HP; Greenall A; Zubko MK; Morrice N; Lydall D EMBO J; 2008 Sep; 27(18):2400-10. PubMed ID: 18756267 [TBL] [Abstract][Full Text] [Related]
9. 14-3-3 Proteins regulate exonuclease 1-dependent processing of stalled replication forks. Engels K; Giannattasio M; Muzi-Falconi M; Lopes M; Ferrari S PLoS Genet; 2011 Apr; 7(4):e1001367. PubMed ID: 21533173 [TBL] [Abstract][Full Text] [Related]
10. Pph3-Psy2 is a phosphatase complex required for Rad53 dephosphorylation and replication fork restart during recovery from DNA damage. O'Neill BM; Szyjka SJ; Lis ET; Bailey AO; Yates JR; Aparicio OM; Romesberg FE Proc Natl Acad Sci U S A; 2007 May; 104(22):9290-5. PubMed ID: 17517611 [TBL] [Abstract][Full Text] [Related]
11. Rad53-Mediated Regulation of Rrm3 and Pif1 DNA Helicases Contributes to Prevention of Aberrant Fork Transitions under Replication Stress. Rossi SE; Ajazi A; Carotenuto W; Foiani M; Giannattasio M Cell Rep; 2015 Oct; 13(1):80-92. PubMed ID: 26411679 [TBL] [Abstract][Full Text] [Related]
12. Rad53 regulates replication fork restart after DNA damage in Saccharomyces cerevisiae. Szyjka SJ; Aparicio JG; Viggiani CJ; Knott S; Xu W; Tavaré S; Aparicio OM Genes Dev; 2008 Jul; 22(14):1906-20. PubMed ID: 18628397 [TBL] [Abstract][Full Text] [Related]
13. Functions of Saccharomyces cerevisiae 14-3-3 proteins in response to DNA damage and to DNA replication stress. Lottersberger F; Rubert F; Baldo V; Lucchini G; Longhese MP Genetics; 2003 Dec; 165(4):1717-32. PubMed ID: 14704161 [TBL] [Abstract][Full Text] [Related]
14. Nucleolytic processing of aberrant replication intermediates by an Exo1-Dna2-Sae2 axis counteracts fork collapse-driven chromosome instability. Colosio A; Frattini C; Pellicanò G; Villa-Hernández S; Bermejo R Nucleic Acids Res; 2016 Dec; 44(22):10676-10690. PubMed ID: 27672038 [TBL] [Abstract][Full Text] [Related]
15. Replisome stability at defective DNA replication forks is independent of S phase checkpoint kinases. De Piccoli G; Katou Y; Itoh T; Nakato R; Shirahige K; Labib K Mol Cell; 2012 Mar; 45(5):696-704. PubMed ID: 22325992 [TBL] [Abstract][Full Text] [Related]
16. Rad53 checkpoint kinase regulation of DNA replication fork rate via Mrc1 phosphorylation. McClure AW; Diffley JF Elife; 2021 Aug; 10():. PubMed ID: 34387546 [TBL] [Abstract][Full Text] [Related]
17. Helicase Subunit Cdc45 Targets the Checkpoint Kinase Rad53 to Both Replication Initiation and Elongation Complexes after Fork Stalling. Can G; Kauerhof AC; Macak D; Zegerman P Mol Cell; 2019 Feb; 73(3):562-573.e3. PubMed ID: 30595439 [TBL] [Abstract][Full Text] [Related]
18. Ca Li S; Lavagnino Z; Lemacon D; Kong L; Ustione A; Ng X; Zhang Y; Wang Y; Zheng B; Piwnica-Worms H; Vindigni A; Piston DW; You Z Mol Cell; 2019 Jun; 74(6):1123-1137.e6. PubMed ID: 31053472 [TBL] [Abstract][Full Text] [Related]
19. Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Tercero JA; Diffley JF Nature; 2001 Aug; 412(6846):553-7. PubMed ID: 11484057 [TBL] [Abstract][Full Text] [Related]
20. Requirement of the Mre11 complex and exonuclease 1 for activation of the Mec1 signaling pathway. Nakada D; Hirano Y; Sugimoto K Mol Cell Biol; 2004 Nov; 24(22):10016-25. PubMed ID: 15509802 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]